

JavaGram

Agile Development

Version 4

Sharam Hekmat
PragSoft Corporation

Copyright © 2009-2012 by Sharam Hekmat, PragSoft Corporation

All rights reserved.

Printed in the USA by PragSoft Press.

To download JavaGram and code samples included in this book, visit www.pragsoft.com

To send feedback to the author (bug reports, enhancement suggestions, and the like) write

to: hekmat@pragsoft.com

JavaGram is free for non-commercial use. To enquire about commercial use and licensing

of JavaGram, or formal training, write to: sales@pragsoft.com

Content 3

Contents

1 INTRODUCTION .. 12

1.1 BACKGROUND .. 12
1.1.1 Agility Criteria ... 13
1.1.2 Barriers to Rapid Development ... 14
1.1.3 Barriers to Rapid Testing .. 15
1.1.4 Barriers to Rapid Evolution ... 16

1.2 SALIENT FEATURES .. 16
1.2.1 Server Centricity .. 17
1.2.2 Browser-based and Native Desktop Clients .. 19
1.2.3 Static and Dynamic Loading.. 19
1.2.4 Code Caching .. 19
1.2.5 Built-in Types ... 20
1.2.6 Object Orientation ... 20
1.2.7 Multiple Inheritance .. 21
1.2.8 Automatic Remoting... 21
1.2.9 Asynchronous Method Invocation.. 22
1.2.10 Declarative GUIs .. 22
1.2.11 Parameterized Text ... 22
1.2.12 Database Interaction .. 23
1.2.13 Serialization and Parsing ... 23
1.2.14 Business Objects ... 23
1.2.15 Java Interoperation ... 23

1.3 IMPLEMENTATION .. 24
1.3.1 JavaGram Runtime Environment ... 24
1.3.2 Compilation ... 25
1.3.3 JavaGram IDE ... 26
1.3.4 JavaGram Server Monitor ... 26
1.3.5 JavaGram Standard Library Scripts .. 26

1.4 DOWNLOAD AND INSTALLATION ... 27

2 FUNDAMENTALS .. 28

2.1 EXAMPLE ... 28
2.2 LOADING SCRIPTS .. 30
2.3 EXPRESSIONS AND STATEMENTS.. 34
2.4 TYPES .. 34
2.5 CONTROL FLOW ... 35
2.6 ITERATION ... 39
2.7 COMPOSITES .. 42

2.7.1 Containers ... 42
2.7.2 Lists.. 43
2.7.3 Vectors ... 44
2.7.4 Maps .. 47
2.7.5 Object Literals ... 50
2.7.6 Literal versus Dynamic .. 52

2.8 EXCEPTION HANDLING .. 53

3 OBJECT-ORIENTED PROGRAMMING .. 56

3.1 INHERITANCE ... 56
3.2 SHOPPING CART EXAMPLE... 58
3.3 MUTUAL CLASSES ... 67
3.4 FINAL QUALIFIER ... 68

4 JavaGram Agile Development

3.5 THIS AND SUPER .. 68
3.6 METHOD PARAMETERS .. 69
3.7 CLASS VARIABLES ... 71

4 GUI PROGRAMMING ... 72

4.1 DEMO APPLICATION .. 72
4.2 PANELS, LAYOUTS, AND FIELDS .. 74

4.2.1 Data Binding .. 80
4.3 TREES .. 82

4.3.1 Using a Tree Model ... 85
4.4 TABLES .. 88

4.4.1 Using a Table Model ... 90
4.4.2 Lists.. 93

4.5 GRIDS .. 95
4.6 COMPONENT STATUS ... 102
4.7 DIALOGS AND ALERTS ... 107

4.7.1 Dialogs .. 107
4.7.2 Alerts .. 109
4.7.3 File Chooser .. 110
4.7.4 Color Chooser ... 111

4.8 GRAPHS ... 112
4.8.1 Pie Charts .. 112
4.8.2 Line Graphs ... 114
4.8.3 Bar and Stack Graphs .. 115
4.8.4 Bubble Graph .. 117
4.8.5 Pipe Graph .. 119
4.8.6 Gauge and Range Bar ... 120
4.8.7 Flow Graphs .. 121

4.9 MENUS AND TOOLBARS ... 125
4.9.1 Pull-down Menus ... 125
4.9.2 Popup Menus ... 128
4.9.3 Toolbars ... 128

4.10 GOOGLE MAP .. 130
4.11 CODE EDITOR .. 132
4.12 WORKING WITH HTML ... 134

4.12.1 Displaying HTML ... 134
4.12.2 Generating HTML Reports ... 136
4.12.3 Generating Images .. 137

4.13 TIPS AND TRICKS ... 137
4.13.1 Using Boiler Plates ... 137
4.13.2 Managing Component Visibility ... 138
4.13.3 Correct Use of Layouts ... 139
4.13.4 Managing Periodic Tasks ... 140
4.13.5 Using Worker Threads .. 141
4.13.6 Procedural Creation of Components .. 143

4.14 BROWSER-BASED GUIS ... 144
4.15 SUMMARY OF ELEMENTS .. 145

5 SQL PROGRAMMING .. 147

5.1 WORKING WITH DATABASES ... 147
5.1.1 Explicit Connection ... 148
5.1.2 Implicit Connection ... 148

5.2 TEXT MEMBERS ... 150
5.2.1 Text .. 150
5.2.2 Text.sql ... 151

Content 5

5.3 TRANSACTIONS .. 152
5.3.1 Creating a Database .. 152
5.3.2 Creating Tables ... 152
5.3.3 Dropping Tables .. 154
5.3.4 Inserting Rows ... 154
5.3.5 Updating Rows .. 156
5.3.6 Deleting Rows .. 157

5.4 QUERIES ... 157
5.4.1 Retrieving Rows ... 158
5.4.2 Processing a Result Set .. 159
5.4.3 Retrieving Attributes .. 159
5.4.4 Counting Rows ... 160
5.4.5 Performing Joins ... 160

5.5 CALLING STORED PROCEDURES ... 162
5.6 STREAMLINED DATA MODELING ... 163
5.7 BUSINESS OBJECT MODEL ... 165

5.7.1 Subclassing Object... 165
5.7.2 File Handling ... 168
5.7.3 Locking .. 173

6 ADVANCED TOPICS ... 179

6.1 CLIENT-SERVER COMMUNICATION .. 179
6.1.1 Remote Methods .. 180
6.1.2 Remote Classes .. 185
6.1.3 Exception Handling ... 189
6.1.4 Targeted Remote Calls .. 189
6.1.5 Clocal, slocal, and side .. 191

6.2 THREADS ... 192
6.2.1 Working with Threads .. 192
6.2.2 Synchronization ... 194
6.2.3 ThreadLocal Fields .. 195
6.2.4 Timer Class .. 196

6.3 ASYNCHRONOUS BEHAVIOR .. 197
6.3.1 Local Asynchronous Call ... 198
6.3.2 Parallel Processing ... 199
6.3.3 Remote Asynchronous Call .. 200
6.3.4 Guarded Asynchronous Call .. 201

6.4 REPORT GENERATION .. 201
6.4.1 Report Class .. 203
6.4.2 ReportEngine Class ... 203
6.4.3 FopConverter Class ... 204
6.4.4 JodConverter Class ... 206
6.4.5 Example ... 207

6.5 WEB SERVICES... 213
6.5.1 Architecture ... 213
6.5.2 JavaGramService ... 213

6.5.2.1 JavaGramService Methods .. 214
6.5.2.2 XML Syntax for methodCall() .. 215
6.5.2.3 XML Representation of JavaGram Data ... 217

6.5.3 Software Installation .. 218
EDIT TOMCATôS ... 219

6.5.4 Configuration ... 220
6.5.4.1 Server Configuration ... 220
6.5.4.2 JAGWS Configuration .. 221
6.5.4.3 Additional JAR files .. 221
6.5.4.4 Virtual Directory ... 222

6 JavaGram Agile Development

6.5.5 Virtual Directory ... 222
6.5.6 Client Example .. 223

6.6 EFFICIENCY CONSIDERATIONS ... 225
6.6.1 System-level Caching ... 225
6.6.2 System-level Compression ... 225
6.6.3 Application-level Caching ... 226
6.6.4 Remoting Performance Factors ... 226

7 DEPLOYMENT ... 228

7.1 RUNNING A PROGRAM ... 228
7.1.1 JavaGram Options ... 228
7.1.2 Java Options .. 231
7.1.3 Compilation ... 231

7.2 SERVER DEPLOYMENT ... 232
7.2.1 Application Server ... 232
7.2.2 Proxy Server .. 237
7.2.3 Multi-tier Servers ... 238
7.2.4 Deploying a Server as a Service .. 239

7.3 NATIVE CLIENT DEPLOYMENT ... 239
7.3.1 JavaGram Application Booter ... 239
7.3.2 Automatic Upgrade .. 241

7.4 BROWSER CLIENT DEPLOYMENT ... 242
7.4.1 HTML Embedding ... 242
7.4.2 Flash Security Sandbox ... 244
7.4.3 Partitions ... 244
7.4.4 Deploying to a Web Server .. 246
7.4.5 Server Deployment with BlazeDS .. 246

7.5 STANDALONE DEPLOYMENT .. 247
7.6 FILE CACHING .. 248

7.6.1 Server-side Caching... 248
7.6.2 Client-side Caching ... 248

7.7 JAVAGRAM SERVER MONITOR .. 249
7.7.1 Running JSM .. 249
7.7.2 Server Tabs .. 250

8 QUEST SAMPLE APPLICA TION .. 256

8.1 INTRODUCTION .. 256
8.1.1 Requirements ... 256

8.1.1.1 Issue Life Cycle ... 257
8.1.1.2 Issue BO .. 258
8.1.1.3 History BO .. 259
8.1.1.4 User BO ... 259
8.1.1.5 Attachment BO .. 259
8.1.1.6 Rules BO ... 260

8.1.2 User Interface .. 260
8.1.2.1 Login Window... 260
8.1.2.2 Main Window .. 261
8.1.2.3 Menubar and Toolbar .. 262
8.1.2.4 User Admin Panel ... 263
8.1.2.5 User Details Panel ... 263
8.1.2.6 Issue Search Panel ... 264
8.1.2.7 Issue Details Panel .. 266
8.1.2.8 Generating Reports .. 268
8.1.2.9 Log Panel .. 269
8.1.2.10 Pick Lists Panel .. 269
8.1.2.11 Help Panel .. 270

8.2 DESIGN .. 270

Content 7

8.2.1 Object Model ... 270
8.2.1.1 quest/ ... 270
8.2.1.2 quest/gui/ ... 271
8.2.1.3 quest/bom/ ... 272
8.2.1.4 quest/gui/user/ ... 273
8.2.1.5 quest/gui/issue/ .. 274
8.2.1.6 quest/gui/misc/ .. 275
8.2.1.7 quest/gui/setting/ ... 275

8.2.2 Data Model .. 276
8.3 IMPLEMENTATION .. 276

8.3.1 Business Objects .. 276
8.3.1.1 User BO ... 276
8.3.1.2 Issue BO .. 280
8.3.1.3 Attachment BO .. 284
8.3.1.4 History BO .. 287
8.3.1.5 Rule BO ... 288
8.3.1.6 DbTables ... 289

8.3.2 Main Window ... 290
8.3.2.1 Quest ... 290
8.3.2.2 AppPanel ... 293
8.3.2.3 AppTree .. 295
8.3.2.4 Commands... 298

8.3.3 User Admin .. 301
8.3.3.1 UserSearch .. 301
8.3.3.2 UserScreen .. 303
8.3.3.3 PasswordDialog ... 304

8.3.4 Issue Management ... 306
8.3.4.1 IssueSearch .. 306
8.3.4.2 IssueScreen .. 309
8.3.4.3 AssignDialog ... 319
8.3.4.4 ResolveDialog ... 320
8.3.4.5 RejectDialog .. 321

8.3.5 Setting .. 322
8.3.5.1 PickListPanel ... 322
8.3.5.2 LogPanel ... 323

8.3.6 Miscellaneous .. 324
8.3.6.1 AboutDialog .. 324
8.3.6.2 HtmlPanel .. 324

8.3.7 Configuration ... 324

9 EXTENSIONS .. 326

9.1 INTRODUCTION .. 326
9.1.1 Parse Tree.. 326
9.1.2 Types .. 328
9.1.3 Objects ... 329
9.1.4 IO ... 330
9.1.5 Environment ... 330

9.2 WRITING A GUI EXTENSION .. 330
9.2.1 Usage ... 331
9.2.2 Naming Conventions .. 332
9.2.3 Implementation .. 332

9.3 WRITING A TEXT EXTENSION... 336
9.4 WRITING AN AD-HOC EXTENSION .. 338
9.5 PACKAGING YOUR EXTENSION .. 340

10 CORE REFERENCE .. 341

10.1 COMMENTS ... 341
10.2 IDENTIFIERS .. 341

8 JavaGram Agile Development

10.2.1 Reserved Words .. 341
10.2.2 Qualification ... 342
10.2.3 Naming Conventions ... 342

10.3 JAG ELEMENT .. 343
10.3.1 Jag Element Properties ... 343

10.4 LOAD ELEMENT .. 344
10.4.1 Load Element Properties .. 345
10.4.2 Data Types .. 345

10.4.2.1 Atomic Types ... 346
10.4.2.2 Composite Types.. 346
10.4.2.3 User-defined Types .. 347
10.4.2.4 Native Type .. 347
10.4.2.5 Vague Type .. 347
10.4.2.6 Void Type .. 347
10.4.2.7 Implicit Type Cast .. 347
10.4.2.8 Explicit Type Cast .. 348

10.5 LITERALS .. 348
10.5.1 Atomic Literals .. 348

10.5.1.1 Boolean Literals ... 348
10.5.1.2 Character Literals ... 349
10.5.1.3 Integer Literals ... 349
10.5.1.4 Real Literals ... 349
10.5.1.5 String Literals ... 350
10.5.1.6 Symbol Literals .. 350
10.5.1.7 Date Literals ... 350
10.5.1.8 Binary Literals ... 351
10.5.1.9 XML Literals ... 351

10.5.2 Composite Literals .. 351
10.5.2.1 Vector Literals ... 351
10.5.2.2 List Literals .. 352
10.5.2.3 Map Literals ... 352
10.5.2.4 Object Literals .. 353

10.6 EXPRESSIONS .. 354
10.6.1 Unary Operators ... 354

10.6.1.1 + Operator .. 354
10.6.1.2 ï Operator .. 354
10.6.1.3 ++ Operator .. 354
10.6.1.4 -- Operator .. 354
10.6.1.5 ! Operator ... 355
10.6.1.6 ~ Operator .. 355
10.6.1.7 Typeof() Operator .. 355
10.6.1.8 Valueof() Operator ... 355
10.6.1.9 Arg() Operator ... 356

10.6.2 Binary Operators .. 356
10.6.2.1 = and @= Operators ... 356
10.6.2.2 + and += Operators .. 357
10.6.2.3 ï and ï= Operators ... 358
10.6.2.4 * and *= Operators ... 359
10.6.2.5 and /= Operators ... 359
10.6.2.6 % and %= Operators .. 359
10.6.2.7 Equality (==, ?=, !=, ===, !==) Operators ... 359
10.6.2.8 Relational (<, <=, >, >=) Operators .. 360
10.6.2.9 Logical (&&, ||) Operators ... 360
10.6.2.10 Bitwise (&, &=, |, |=, ^, ^=) Operators ... 360
10.6.2.11 Bitwise Shift (<<, <<=, >>, >>=) Operators .. 361
10.6.2.12 List/vector/map access Operator .. 361
10.6.2.13 Object access (. and ?.) Operators .. 361
10.6.2.14 @ Operator ... 362
10.6.2.15 Instanceof Operator .. 363

10.6.3 Ternary Operators .. 363

Content 9

10.6.3.1 Conditional Expressions ... 363
10.6.3.2 Asynchronous Method Invocation ... 363

10.6.4 N-ary Operators .. 365
10.6.4.1 Vector Operator.. 365
10.6.4.2 List Operator .. 365
10.6.4.3 Map Operator ... 365
10.6.4.4 New Operator ... 366
10.6.4.5 Object Operator .. 366

10.6.5 Operator Precedence .. 367
10.6.6 Delayed Strings ... 367
10.6.7 Method Invocation .. 368

10.7 STATEMENTS ... 368
10.7.1 Expression Statement .. 368
10.7.2 Blocks .. 368
10.7.3 If Statement ... 369
10.7.4 While Loop .. 369
10.7.5 Do Loop .. 370
10.7.6 For Loop ... 370
10.7.7 For-in Loop ... 371
10.7.8 Break Statement .. 371
10.7.9 Continue Statement ... 371
10.7.10 Return Statement ... 372
10.7.11 Switch Statement ... 372
10.7.12 Throw Statement ... 373
10.7.13 Try Statement .. 373
10.7.14 Synchronized Statement .. 374
10.7.15 Query Statement .. 374
10.7.16 Transaction Statement .. 375
10.7.17 Assert Statement .. 375

10.8 CLASSES .. 375
10.8.1 Class qualifiers ... 376
10.8.2 Class Properties .. 377
10.8.3 Fields .. 377

10.8.3.1 Field Qualifiers .. 377
10.8.3.2 Field Initialization .. 378

10.8.4 Methods ... 378
10.8.4.1 Method Qualifiers .. 379
10.8.4.2 Constructors ... 380
10.8.4.3 Invoking Methods .. 380
10.8.4.4 This .. 381
10.8.4.5 Default Arguments ... 381
10.8.4.6 Variable Number of Arguments ... 381
10.8.4.7 Method Overloading .. 382
10.8.4.8 Type Checking ... 382
10.8.4.9 Remote Methods .. 382
10.8.4.10 Targeted Remote Calls ... 384
10.8.4.11 Local Methods ... 384

10.8.5 Inheritance .. 385
10.8.5.1 Abstract Methods ... 385
10.8.5.2 Polymorphism .. 386
10.8.5.3 Super .. 386
10.8.5.4 Mutual Classes ... 386
10.8.5.5 Subclass Constructor Rules .. 387

10.8.6 Text Members .. 388
10.8.6.1 Text Properties ... 389
10.8.6.2 Text Qualification .. 389

10.8.7 GUI Members ... 390
10.8.8 Static Initialization Blocks .. 390

10 JavaGram Agile Development

10.8.9 Singleton Classes .. 390
10.8.10 Remote Classes ... 391

10.9 EXCEPTIONS .. 392
10.10 THE SYS PSEUDO CLASS ... 393

10.10.1 Sys Attributes .. 393
10.10.2 Sys Methods .. 395

10.10.2.1 Parsing and Evaluation ... 395
10.10.2.2 File Handling ... 396
10.10.2.3 Input/Output ... 400
10.10.2.4 Debugging .. 401
10.10.2.5 String Handling .. 402
10.10.2.6 Client-server ... 407
10.10.2.7 Maths ... 413
10.10.2.8 Date .. 415
10.10.2.9 Collections ... 416
10.10.2.10 Miscellaneous ... 419

11 GUI REFERENCE .. 424

11.1 MARKUP.. 424
11.1.1 Element Qualifiers .. 425
11.1.2 Element Identifiers .. 425
11.1.3 Element Properties.. 426

11.1.3.1 Event Handlers ... 426
11.1.3.2 Data Models ... 427

11.1.4 Boiler Plates ... 428
11.2 ELEMENT TYPES.. 428

11.2.1 Abstract Elements ... 428
11.2.2 Application Elements .. 432
11.2.3 Window Elements .. 433
11.2.4 Layout Elements .. 436
11.2.5 Container Elements ... 438
11.2.6 Menu Item Elements .. 442
11.2.7 Decorative Elements ... 443
11.2.8 Field Elements .. 444
11.2.9 Selection Elements .. 446
11.2.10 Button Elements .. 449
11.2.11 Feedback Elements ... 449
11.2.12 Area Elements ... 450
11.2.13 Tree Elements ... 450
11.2.14 Table Elements .. 452
11.2.15 Grid Elements ... 455
11.2.16 Graph Elements .. 459
11.2.17 Gadget Elements ... 468
11.2.18 Map Elements ... 469
11.2.19 Jade Elements ... 472
11.2.20 Reference Elements ... 473
11.2.21 Invisible Elements ... 474

11.3 THE GUI PSEUDO CLASS ... 476
11.3.1 Gui Attributes .. 476
11.3.2 Gui Methods .. 476

12 SQL REFERENCE .. 482

12.1 QUERY AND TRANSACTION STATEMENTS ... 482
12.2 MARKUP.. 482

12.2.1 Field Translation .. 482
12.2.2 Text.sql .. 482
12.2.3 Text.sql.query .. 483

Content 11

12.2.4 Text.sql.update .. 484
12.2.5 Text.sql.prepare .. 484
12.2.6 Text.sql.callable .. 484
12.2.7 Element Properties.. 485
12.2.8 Capability Summary.. 486

12.3 DATABASE CONNECTION CONFIGURATION ... 487
12.4 THE SQL PSEUDO CLASS ... 488
12.5 BUSINESS OBJECT MANAGER .. 495
12.6 THE BOM PSEUDO CLASS .. 497

13 LIBRARY REFERENCE .. 500

13.1 LIB/LANG/ ... 500
13.2 LIB/SVR/ .. 502
13.3 LIB/IO/ ... 503
13.4 LIB/GUI/ .. 504
13.5 LIB/BOM/ ... 511
13.6 LIB/SQL/ .. 513

14 JADE ï JAVAGRAM IDE .. 514

14.1 OVERVIEW .. 514
14.2 PROJECTS .. 515

14.2.1 Project Operations .. 515
14.2.2 Project Tree .. 516
14.2.3 Outline Tree .. 518
14.2.4 Project Properties ... 519
14.2.5 Project Statistics ... 523
14.2.6 Building a Project ... 523

14.3 EDITOR .. 524
14.3.1 File Operations ... 525
14.3.2 Editing Operations .. 527
14.3.3 Code Insight .. 529
14.3.4 Reformatting a File ... 530
14.3.5 Viewing a Script in HTML .. 531

14.4 SEARCHING AND REFACTORING .. 531
14.4.1 Searching a File .. 531
14.4.2 Searching a Project... 532
14.4.3 Refactoring .. 533

14.5 RUNNING ... 533
14.6 DEBUGGING .. 534
14.7 TOOLS ... 537

14.7.1 Import Java Classes .. 537
14.7.2 Preferences ... 539

15 JAVAGRAM SYNTAX ... 543

15.1 CONVENTIONS ... 543
15.2 JAG PRODUCTION RULES ... 543
15.3 JTP PRODUCTION RULES ... 553

12 JavaGram Agile Development

1 Introduction

JavaGram is a new technology specifically designed to support agile development. As a

language, it shares many of Javaôs features ï syntax, platform independence, strong type

checking, object orientation, and garbage collection ï but also offers capabilities that

make it a much easier-to-use and productive platform, such as declarative programming,

automatic remoting, asynchronous method invocation, and dynamic loading.

JavaGram enables you to deploy a standalone or multi-tier client-server application from

a single code base, allowing you to run your client in an Internet browser as well as a

native desktop application. It manages the underlying complexities of distributed

applications for you so that you can focus on what matters most: implementing business

functionality. Furthermore, time consuming activities such as application maintenance

and patching are significantly simplified through a server-centric release process that

automatically updates all dependent deployment points.

The technology is simple and easy to learn; yet the benefits are overwhelming ï up to an

order of magnitude gain in productivity and robustness when compared to conventional

technologies.

1.1 Background

There has been growing interest in recent years in agile software development methods.

The shortcomings of traditional, waterfall methods have been known for at least three

decades, namely:

¶ The requirements for a complex system can rarely be specified fully and accurately in

advance.

¶ Despite tight quality control, the output of each phase will contain gaps or flaws that

wonôt be discovered until a later phase.

¶ User requirements will evolve during the course of a long project, thus making the

end-result inconsistent with the latest requirements.

¶ The cost of fixing a requirement or design defect discovered later in the project is

substantial.

¶ Given that a working system is not available until late in the project, there is little

opportunity for user participation and feedback; this increases the risk of the system

not being accepted by the users.

¶ These challenges often cause schedule delays and budget blowouts.

The agile approach attempts to address these difficulties by promoting a more iterative

lifecycle, where emphasis is on prototyping, user participation, having a working system

Introduction 13

all along, and less documentation. The approach is best summarized by the agile

manifesto (www.agilemanifesto.org), which places more value on:

¶ individuals and interactions over processes and tools,

¶ working software over comprehensive documentation,

¶ customer collaboration over contract negotiation, and

¶ responding to change over following a plan.

Successful adoption of the agile approach requires the overcoming of cultural, process,

and practice barriers. Although these challenges are primarily non-technological, the use

of suitable technology can be of substantial benefit. The reality is that most technologies

available today are not particularly well-suited to the agile approach, typically because

they either predate the óagile ageô or ignore its dynamics.

JavaGram has been specifically designed to support the dynamics of agile development.

Its conception is the result of over ten years of experience gained from successfully

practicing RAD and agile in commercial software projects. As such, itôs a technology

designed by a practitioner for practitioners.

1.1.1 Agility Criteria

So what makes a technology more suited to agile development than others? The answer

to this question lies in the dynamics of practicing agile in real-life projects.

Agile relies heavily on iterative development. The first priority in a project is to produce

a working prototype of a proposed system and then to use this as a vehicle for eliciting

detailed user requirements. As requirements emerge, these are used to further refine and

enhance the prototype. Enhancements are done as a series of mini development cycles

where during each cycle we design, code, and test the next increment, and invite users to

evaluate the outcome.

The cyclic and iterative nature of agile places great emphasis on going from requirements

to working software rapidly. Speed is of the essence; otherwise cycles become slow and

ineffective. Rapid delivery of the next cycle ensures that users will remain engaged and

the project will not lose momentum. At the same time, itôs important to keep the project

team small to avoid communication overheads and to minimize the need for detailed

documentation, both of which will slow things down.

In order to speed up each cycle, we must not only have the means to design and code

business functionality quickly, but also to rapidly turnaround defects raised during the

testing phase. When this is not the case, testing can become hopelessly inefficient, as

testers will spend most of their time waiting for critical fixes without which further

testing canôt take place.

Equally important is the cross cycle speed. If each subsequent cycle takes longer than the

previous one due to developers finding it difficult to add new functionality then

14 JavaGram Agile Development

momentum will be lost and eventually grind to a halt. It is therefore vital that the

application under development lends itself to alteration and evolution. While this is

primarily influenced by the quality and foresight of the original design, the underlying

technology can go a long way in promoting good practices that avoid design inflexibility.

Finally, agile is all about simplicity. Simplicity is achieved by untangling complexity so

that the essential is separated from the accidental. Once weôve identified whatôs essential,

the least complicated way of getting there has the potential to deliver the best outcome.

Without constant awareness of this, IT professionals have a tendency to be dazzled by

technological complexity and run the risk of over-engineering their solutions.

1.1.2 Barriers to Rapid Development

In order to design a language that facilitates speedy development, we must consider the

things that slow down developers; namely:

¶ Language complexity. The more complex a language is, the steeper its learning

curve will be. Contrary to the popular opinion that a languageôs complexity is a

function of its number of features and constructs, itôs primarily a product of giving the

programmer too many different ways of doing the same thing. Too much choice

leaves the programmer in a situation where they have to constantly think about

choosing the best approach, and this will slow down development. JavaGram avoids

this pitfall by not attempting to be a totally versatile and general purpose

programming language. For example, JavaGram offers only three container types ï

lists, vectors, and maps ï each of which has only one implementation. So when the

programmer sees the need for a container, no time is lost on deciding which one to

use.

¶ Plumbing overhead. More than 50% of code in a typical application tends to be of

óplumbingô nature. This is code that doesnôt implement business functionality but

performs essential housekeeping. For example, data entered by the user into a screen

typically needs to be extracted, validated, stored in a suitable data structure defined by

the programmer, transmitted from the client to the server using a message defined by

the programmer, unwrapped on the server-side, processed by interacting with a

database, and so on. Typically, such data goes through a number of transformations

where itôs changed from one format to another, and yet another, until it finally can be

acted upon. JavaGram greatly reduces the need for plumbing code by performing

such tasks behind the scene without the programmer having to worry about them.

This saves the programmer much valuable time, enabling them to focus on actual

business functionality. Interestingly, because a lot of unnecessary transformation is

avoided, the end-to-end process executes faster, thus also saving computational

resources.

¶ Procedural clutter . Most languages (including Java) require the programmer to think

procedurally. While this works well in some situations (e.g., implementing

transactions), it hinders tasks that are better suited to a declarative style. GUI

programming is one such task. Because GUIs are visual and typically hierarchical, a

declarative notation can be far more expressive and convenient for implementing

Introduction 15

them. JavaGram adopts this style by allowing the programmer to define GUIs using a

markup notation. This not only results in a lot less code, it also greatly enhances the

readability of the code, to the extent that the GUI can be easily visualized by simply

observing the code.

¶ Static composition. Most languages take a static view of the components that

comprise a program and require all the referred components to be in place before the

program can be executed. Because of the incremental nature of agile, this is a major

inconvenience which forces the programmer to define placeholders and stubs to work

around the issue. JavaGram overcomes this problem by allowing the programmer to

dynamically load scripts. For example, if the action of a push button is defined by a

dynamically-loaded script, the programmer will be able to run the program even if

this script is not defined or is incomplete and has compilation errors. These errors will

not surface unless the user actually pushes the button.

¶ Complex object model. In object-oriented programming, business objects can be a

source of substantial complexity. Most of this complexity is in the underlying

implementation of the business objects (e.g., persistence). However, from an agile

development viewpoint, itôs not the implementation thatôs important but the business

functionality offered by the object. JavaGram reduces this complexity by offering a

straightforward implementation model based on a generic object which hides much of

the underlying complexity. By sub-classing the generic business object class and

using declarative schemas, the programmer can do away with time-consuming and

error-prone activities such as implementing object persistence.

1.1.3 Barriers to Rapid Testing

The key to an effective and fast testing cycle is the ability to turnaround defects quickly.

The usual pattern in system testing is that a tester runs a number of test cases and records

observed defects. Some of these defects become showstoppers, preventing the tester from

progressing any further. At this point the tester will need to wait until enough defects

have been fixed and a new release produced so that testing can continue.

The main barrier to quickly delivering a test release is a slow build process. JavaGram

addresses this by eliminating the need to produce an actual build. A release can simply

consist of the correct versions of the scripts that comprise the application, extracted from

a version control system and placed on a test application server. Compilation is not

required, as the application server will incrementally compile the scripts on demand. This

means that even a large application can be released in minutes.

Even better, for the majority of fixes, a complete release is not required. Developers can

choose to release only the few affected scripts that fix the outstanding defects. JavaGram

even allows an application to be hot fixed without restarting the server. Experience has

shown that critical defects can be turned around shortly after theyôre raised by testers,

thus enabling testers to continue their work with minimal disruption. Similar benefits are

gained in production support.

16 JavaGram Agile Development

1.1.4 Barriers to Rapid Evolution

A live application is best regarded as an evolving entity. The more the application is used,

the more users will demand from it ï active use leads to rapid evolution. When a new

application is designed, itôs almost impossible to foresee all the future demands that will

be placed on it. At any point in time, itôs only practical to consider features that are likely

to be demanded in the near to medium term. Future (and especially unforeseen) demand

is likely to stretch the application design to an extent that couldnôt have been predicted.

Long term therefore, the malleability of the design becomes a critical issue. A design

thatôs not accommodative of change will eventually break and disrupt the evolution

process. So how can a design be made malleable? There are two competing views on this

subject.

The first view argues that considerable flexibility should be built into the design from the

beginning to make it future proof. This is intellectually appealing but in practice rarely

successful. The problem with this approach is that devising extensive design flexibility

can be very costly and invariably leads to design complexity, both of which go against

the agile principles. Experience indicates that, in the long run, very few of such expensive

flexibilities actually get used and the rest become a liability.

The second view argues for simplicity. By keeping a design as simple as possible, we not

only shorten the construction phase, we also make it easier for future developers to

understand its make-up. The latter is far more valuable than some appreciate. Most

practitioners would testify that the biggest hurdle in tweaking a design is to first

understand it. Once this is achieved, only a bit of developer creativity is required to work

out a way of accommodating something new.

JavaGram adheres to the simplicity view. The language helps the developer to express

things succinctly and with minimum clutter. Reduced plumbing code means that the vast

majority of code actually represents business functionality. This facilitates understanding

and makes it easier to work out how to best apply a change.

1.2 Salient Features

JavaGram builds on the strengths of Java and closely follows the Java syntax and

semantics, including strong type checking. This should make it very easy for a Java

programmer to become proficient in JavaGram.

This section summarizes those features of JavaGram that characterize it as an agile

programming language. While reading this summary, donôt worry if something is not

entirely clear to you or sounds too technical. The intent here is to give a flavor of

JavaGram in a limited space. Subsequent chapters will explore these topics in greater

depth and at a gentler pace.

Introduction 17

1.2.1 Server Centricity

Historically, programming languages have been designed with the assumption that

application code will need to be installed in its target environment before it can be

executed. The World Wide Web has been the most significant departure from this

paradigm. Under this model, a web application is not pre-installed on the client side, but

is incrementally downloaded in response to actions taken by the user. However, this

dynamically-downloaded code (HTML, which may also include JavaScript and the like)

is primarily concerned with presentation, and is generated by the actual application code

residing on the web server, hence the term thin client.

The design of JavaGram was inspired by this model, with a key difference: rather than

the server generating presentation code for the client, the server delivers executable code

to the client. Like the web model, the client initially contains no code at all, but rather is a

shell capable of receiving code and óinterpretingô it. In the web model, the client is a web

browser; in the JavaGram model, the client is a compact runtime environment called

JAG.

Web Server World-wide-web

Web
Browser

Client

Client requests
web page

Web page is
delivered to client

http://www.acme.com/products

18 JavaGram Agile Development

A JavaGram client boots itself against a JavaGram server using an initial address (similar

to a URL in a web browser), which identifies the server and the initial script. In response

to this, the server creates a session thread to handle all subsequent communication with

the client. The requested script is then sent to the client, which the latter loads and

executes. During the course of execution, the script may refer to other scripts, which are

sourced from the server in a similar manner. Therefore, the client code base is built

incrementally according to user actions.

Like the thin client model, the server-centric model of JavaGram has a number of

advantages over the traditional fat client model; namely:

¶ There is no need to install an application at the client end.

¶ An application can start quickly because the loading process is incremental.

¶ Release management is much easier, as a new version of the application doesnôt need
to be installed on every client, just on the server(s). The latter is much easier because

servers are centralized and there is a lot less of them than clients ï which are not only

numerous but also often out of reach.

The JavaGram model also retains some of the advantages of the traditional fat client

model; namely:

¶ Unlike the thin client model which is stateless, the JavaGram model is stateful.

Because each client is allocated a dedicated session that lasts for the duration of the

connection, the session accurately reflects the server-side state of the client. This

eliminates the burden of additional programming normally required for thin clients to

keep track of state information.

¶ JavaGram supports both synchronous and asynchronous requests, as opposed to the

asynchronous-only thin client model.

¶ The programmer can delegate some of the applicationôs processing to the client end
(e.g., report generation, complex calculations) within the same code base. This

App Server World-wide-web

JAG

Client

Client attempts to
Access a script

Script is
delivered to client

www.acme.com:443/search.jag

JAG loads and
executes script

Introduction 19

provides more scope for load balancing and making sure that server(s) donôt become

a bottleneck.

For lack of a better term and to distinguish the JavaGram model from the fat client and

thin client models, weôll subsequently refer to it as the hybrid client model.

1.2.2 Browser-based and Native Desktop Clients

A unique feature of JavaGram is that the same application code base can support

browser-based as well as native desktop clients. JavaGram achieves this by offering two

versions of its runtime environment:

¶ The Flash version of the JavaGram runtime (JAG.swf) is written in ActionScript 3

(AS3) and runs within the Flash Player engine. When a browser-based client uses this

runtime, itôs automatically downloaded from the web server.

¶ The Java version of the JavaGram runtime (JAG.jar) is utilized by native desktop

clients. The same runtime is also used by JavaGram servers as well as standalone

applications.

Both runtimes are very compact and therefore carry little download overheads.

1.2.3 Static and Dynamic Loading

JavaGram support static as well as dynamic loading of scripts. Static loading is suitable

for specifying cross-script dependencies. Dynamic loading is suitable for situations where

we donôt want a script to be loaded until itôs activated by a trigger (e.g., the user

performing an action). In both cases, the requested script may be sourced locally or from

an application server.

The JavaGram application server uses an implicit form of dynamic loading to serve

remote calls received from a client. When a remote call is received by a server, the

underlying message includes the path of the script that contains the definition of the

target class. The server uses this path to dynamically load the script if itôs not already

loaded. This ensures that the loading of scripts on the server-side is automatic, demand-

driven, and hence not a burden on the programmer.

1.2.4 Code Caching

To minimize client-server traffic, JavaGram employs a comprehensive caching

mechanism that maintains an active cache on both the client and server ends.

On the client side, the cache is somewhat similar to the local cache of a web browser, but

is more deterministic. Whereas a web browser refreshes the pages in its cache based on

their age, JavaGram requires an exact timestamp match. This is necessary in order to

ensure the consistency of the versions of scripts that make up an application.

20 JavaGram Agile Development

The server-side cache serves a different purpose. Because a JavaGram script can contain

code intended for clients and/or servers, each script is compiled to produce two variants ï

one for the client-side (from which server-related information is removed) and one for the

server-side (from which client-related information is removed). These binary files are

deposited into the server-side cache. This cache is automatically updated when a script is

modified.

1.2.5 Built-in Types

JavaGram provides the following built-in types.

¶ Atomic Types:

¶ boolean (similar to Java boolean)

¶ char (similar to Java char)

¶ int (similar to Java long)

¶ real (similar to Java double)

¶ string (similar to java.lang.String).

¶ symbol (like string except that multiple instances having the same representation

are stored only once)

¶ date (date and time)

¶ stream (mechanism for performing IO with respect to a file, buffer, or client-

server communication channel)

¶ Composite Types:

¶ vector (contiguous sequence of values, with random access)

¶ list (sequence of values, without random access)

¶ map (key-value pairs, with random access)

¶ object (opaque instances of user-defined types, similar to java.lang.O bject)

¶ Pseudo Types:

¶ vague (can represent any type)

¶ native (Java values with no equivalent type in JavaGram)

¶ void (absence of a value)

Values for atomic and composite types can be created literally (except for stream) or

programmatically.

1.2.6 Object Orientation

The OO features of JavaGram are very similar to Java, with the following notable

exceptions.

Introduction 21

¶ Support for multiple inheritance.

¶ Support for remote methods and classes, both of which are managed transparently to

the programmer.

¶ Support for GUI members (behave like class fields and allow you to define user

interface components declaratively and hierarchically).

¶ Support for text members (behave like methods and allow you to do advanced text

processing).

¶ Support for SQL members (behave like methods and allow you to isolate your SQL

code).

¶ Support for singleton classes.

¶ Support for object literals (class instances that are created at load time rather than

runtime).

¶ Ability to limit the visibility of a class method to client or server side.

¶ Ability to specify default argument values for methods.

1.2.7 Multiple Inheritance

Multiple inheritance (MI) is a powerful design tool that, when used judiciously, can

simplify a design and reduce development effort. Unfortunately, MI has attracted plenty

of bad publicity due to complex realizations (e.g., C++) that programmers have struggled

with. JavaGram attempts to remedy this using mutual classes:

¶ A derived class can have multiple base classes, provided at most one of them is non-

mutual.

¶ All the base classes of a mutual class (if any) must also be mutual.

¶ Mutual classes that are inherited more than once in a class hierarchy (as in the

ódreaded diamondô problem) are treated as if they are inherited once. Therefore, an

instance of the derived class contains only one instance of the mutual classôs fields. In

this sense, mutual classes behave like virtual base classes in C++.

1.2.8 Automatic Remoting

Remote methods represent one of the most powerful features of JavaGram. They make

the task of writing client-server applications exceptionally easy by removing the burden

of having to deal with data communication, synchronization, hand-shaking, error

handling, and so on. As a result, invoking a remote method on a server becomes as easy

as invoking a local method. Hiding all this complexity has the added benefit of allowing

the programmer to easily use the same code in different deployment models (standalone

versus distributed).

JavaGram also allows you to define an entire class as remote so that all its actual

processing is handled on the server-side. When a client obtains a reference to a remote

22 JavaGram Agile Development

object, it receives a proxy object instead. Any operation performed on the proxy is

transparently applied to the remote object.

In practice, a client has no way of knowing whether itôs dealing with a remote

method/class or a local one. This ensures that code designed to be deployed as client-

server will also work when run as standalone. The obvious benefit of this is a simplified

testing process ï developers can develop and test standalone and later switch to client-

server when the code is more fully developed.

JavaGramôs exception handling works seamlessly across the client-server boundary. For

example, an exception raised (on the server-side) by a remote method is delivered to the

caller (on the client-side) as if it were a locally raised exception.

1.2.9 Asynchronous Method Invocation

Asynchronous method invocation allows you to call a (local or remote) method such that

you donôt have to wait for it to complete. Execution proceeds to the next statement as

soon as the call is made. When the call eventually completes, a callback is invoked to

complete the processing. If an error callback is also specified and the method throws an

exception then the error callback is invoked instead.

1.2.10 Declarative GUIs

JavaGram offers a completely different style of GUI programming to Javaôs Swing.

Whereas GUI programming in Swing is procedural, JavaGram allows you to define a

GUI declaratively. This has a number of advantages: you write a lot less code, the code is

much more readable, and the code readily portrays the hierarchical structure of the GUI.

As a result, creating sophisticated GUIs in JavaGram is much easier than in Java.

GUI members are defined using a markup notation. This markup notation can be

extended by the programmer to devise new and novel components.

1.2.11 Parameterized Text

Programs often have to do some level of text manipulation. In most programming

languages, this is done through string concatenation (e.g., using the + operator or the

String Builder class of Java). The end result is rather messy and difficult to visualize due

to the procedural nature of the code.

JavaGram offers two facilities to simplify text handling. The first is called delayed strings

and is useful for simple text parameterization tasks. For more elaborate tasks, JavaGram

provides text class members. A text member is like a method and can be used to handle

parameterized text.

Like GUI members, text members are defined using a markup notation which is

extensible. In fact, JavaGram provides a number of such extensions for SQL handling.

Introduction 23

1.2.12 Database Interaction

In JavaGram, interaction with databases is facilitated by the sql pseudo class.

Additionally, a number of parameterized text constructs are provided to make SQL

formation straightforward and consistent with the declarative style of JavaGram.

One of the readability benefits of the JavaGram style of SQL programming is that all

SQL commands are localised to <text.sql...> markups and are hence easily identifiable.

This is superior to the traditional style where SQL is freely sprinkled throughout the code.

1.2.13 Serialization and Parsing

A useful feature of JavaGram is that any value (other than stream and native values, but

including class instances) can be serialized to clear text, as well as parsed without any

extra programming effort. The resulting benefits are:

¶ Complex data structures (such as meta data) can be pre-created in code. This is

convenient as well as self-documenting.

¶ Programs can be debugged more easily.

¶ Composite data can be stored in a single database column and retrieved easily, thus

facilitating much simpler data models.

¶ The data exchanged between client and server ends can be easily viewed in a readable

textual format.

The ability to parse data or code óon the flyô can be valuable in some programming

situations. Itôs especially useful in agile programming, as it can substantially reduce

coding and maintenance effort.

1.2.14 Business Objects

JavaGram provides a pseudo class (bom) and a library class (Object) that together provide

a convenient framework for working with business objects that require persistence. By

sub-classing Object , you can quickly develop a persistent business object without writing

any SQL. The relationship between the objectôs structure and the underlying database

table is specified by the programmer as meta data, which enables Object to work out how

to map the data.

1.2.15 Java Interoperation

JavaGram provides a simple facility for interoperating with its underlying

implementation language (Java). The sys.java() method uses reflection to allow any

Java class or method be accessed, and automatically maps data between JavaGram types

and Java types. This method is rarely used, but is a useful last resort when the

programmer needs to do something that JavaGram doesnôt directly support.

24 JavaGram Agile Development

1.3 Implementation

JavaGram has been developed in pure Java (and AS3) and is therefore platform

independent. The implementation is comprised of four parts:

¶ JavaGram runtime environment (JAG) in two versions (Java and AS3).

¶ JavaGram Development Environment (JADE)

¶ JavaGram Server Monitor (JSM)

¶ JavaGram standard library scripts

The AS3 (Flash) version of JAG comes in three flavor for use in a web browser, Adobe

AIR, or Android.

The overall architecture of JavaGram is illustrated by the following diagram, and the

components described below.

1.3.1 JavaGram Runtime Environment

JAG is packaged as a single JAR file (JAG.jar). Itôs very compact (currently around 1.78

MB) and provides a complete environment for deploying and running JavaGram

applications, including:

¶ Parser, analyzer, and evaluator for interpreting JavaGram code

¶ Compiler for converting JavaGram code into binary format

¶ JavaGram Transfer Protocol (JTP) for client-server messaging (over socket, HTTP, or

HTTPS)

Introduction 25

¶ Application server (for deploying JavaGram servers)

¶ Proxy server (for failover and load balancing application servers)

Every JavaGram client or server is deployed using JAG. A server deployment also

requires a configuration file which specifies the server settings (for security, data

compression, database connection pools, session management, etc.), as well as any other

JAR files used (e.g., JDBC drivers, FOP library, etc.)

All JavaGram servers are generic and exceptionally easy to setup and deploy (taking only

a few minutes). The same application server instance may serve many different

applications. JavaGram code is deployed into an application server by simply dropping it

into a nominated directory.

One of JavaGramôs important promises is that a JAG client (Java version) needs to be

installed only once (Flash version is automatically downloaded by the browser). The

process is like this. The user downloads and runs a small installation program (which

installs JAG.jar , a small Java keystore, and a shortcut to an applicationôs URL) on the

userôs machine. When the user runs the shortcut, the application is automatically booted

(scripts are demand-downloaded as necessary and executed). Application maintenance is

totally transparent to the user:

¶ When a new version of the application is released to a server (i.e., revised scripts),

these revisions automatically find their way to the client installations.

¶ If a new version of JAG.jar is released to a server, this can be automatically

propagated to all clients that depend on the changes in this JAR, causing the new JAR

to be automatically downloaded by the affected clients, and replacing the old JAR.

Furthermore, application code changes that leave class schemas unchanged (i.e., only

affecting the implementation of methods) can be deployed without restarting a server or

any client. This allows emergency hot fixes to servers without disruption to users.

JavaGram application servers are highly scalable. Multiple servers can be deployed in

either a failover or load balanced configuration. Where load balancing is used, traffic is

routed via one or more proxy servers, which in turn match clients against server instances

based on their load.

1.3.2 Compilation

The JavaGram compilation process is straightforward. A script is parsed, analyzed, and

converted to an equivalent byte code. When a server internally compiles a script, it

produces two compiled versions, one for client-end and one for server-end. Either version

excludes information thatôs not relevant to its intended target environment. Scripts can

also be explicitly compiled, in which case a single version is produced thatôs equivalent

to the source. Explicit compilation is suitable for cases where an application is to be

deployed in binary rather than source format (e.g., for intellectual property reasons).

26 JavaGram Agile Development

The JavaGram parser can parse scripts in source or binary format. The latter has the

advantage of being more secure and more efficient ï the parser has to do a lot less work.

The binary codec used by the compiler is version controlled, so if a client tries to load a

script thatôs been encoded using an outdated codec, this is detected, causing a refresh of

that script from the server.

1.3.3 JavaGram IDE

The JavaGram IDE (packaged as JADE.jar) provides a productive visual environment for

developing, debugging, and running JavaGram applications. Key components include:

¶ Projector for setting up and managing the source code for a project

¶ Syntax-directed editor, which automatically color-codes your code

¶ Code Insight for visual navigation of code elements and auto completion

¶ Runner for configuring and running applications as standalone, client, or server

¶ Debugger for setting up breakpoints, inspecting the runtime stack, and viewing the

values of variables

¶ Auto Analyzer which automatically parses and analyzes your projectôs code as you
type, works out dependencies, and visually highlights errors

For a detailed description of JADE, please refer to Chapter 14.

1.3.4 JavaGram Server Monitor

The Server Monitor is a companion tool for monitoring deployed servers. This tool is

implemented entirely in JavaGram and its source code is included in the JavaGram

release. Its functionality includes:

¶ Viewing the server sessions and managing them

¶ Viewing server memory usage pattern

¶ Viewing the server log, where diagnostic information is recorded

¶ Uploading and downloading of files for investigation and patching purposes

¶ Resetting the server and/or its database connection pools

¶ Temporarily suspending user access for maintenance purposes

For a detailed description of JSM, please refer to Chapter 7.

1.3.5 JavaGram Standard Library Scripts

JavaGram comes with a standard library in source format. The scripts in this library

provide you with a set of reusable classes for a variety of tasks, including GUI

development, server deployment, SQL handling, business object management, data

Introduction 27

export, etc. Many of the examples presented in this book utilize these scripts and

illustrate their use. The obvious benefit of using the library is productivity.

The standard library scripts are detailed in Chapter 13.

1.4 Download and Installation

To setup a working JavaGram environment so that you can do development and try out

the examples presented in this book, you need to download and install the following

components.

¶ Download the latest JRE or JDK from java.sun.com and install it, unless this is pre-

installed on your computer.

¶ If you intend to use a browser client, download and install the Flash Player from

www.adobe.com, unless this is pre-installed on your computer. Similarly, if you

intend to use an Adobe AIR client, also download and install Adobe AIR.

¶ Download the latest JavaGram release from www.pragsoft.com and install it. This

installation is required on any computer where you intend to run a JavaGram program

(be it standalone, client, or server). When installing on a computer intended for

development work, you should also choose the option for installing JADE.

¶ Download the latest transactional MySql release from www.mysql.com and install it.

All the SQL examples in this book have been developed with MySql, but you can use

any other database engine that supports JDBC. However, if you use another JDBC-

compliant product (e.g., Oracle, SqlServer, Firebird), you may need to alter the syntax

of some of the SQL examples to conform to that product.

28 JavaGram Agile Development

2 Fundamentals

JavaGram programs consist of scripts. Each script is a text file whose name ends in .jag

(e.g., Test.jag). Compiled script names end in .jax (e.g., Test.jax). Each script defines

one or more classes and may refer to classes in other scripts. Such dependencies are

specified through the load facility, which enables one script to load others during its own

loading or, dynamically, during execution.

2.1 Example

The minimal syntax of a script is exemplified below.

Hello World.jag

<jag domain="doc/code /chap2">

class HelloWorld {

 public static void main () {

 sys . println ("Hello World!");

 }

}

</jag>

You can run it from a DOS command line like this:

java - cp JAG.jar jag.run.Env C:/JavaGram/doc/code/ chap2 /HelloWorld.jag

It will produce the following output.

Hello World!

Letôs look at the contents of this script and their meaning.

The code for a JavaGram script is always enclosed by a <jag></jag> pair, where <jag>

marks the beginning of the script and </jag> marks the end of it. As in HTML and XML,

a JavaGram markup can have properties. For example, the <jag> markup here has a

domain property. This is somewhat similar to the package construct in Java, in that it

defines a namespace for the script. As a result, the class defined in this script has a short

name (HelloWorld) and a long name (doc \ cod e\ chap2 \ HelloWorld). The latter is called a

qualified class name. Ordinarily, we use the short name of a class, but if two or more

classes defined in different domains have the same name, the qualified class name can be

used to avoid ambiguity.

You may have noticed that weôve used forward slashes in the domain name and

backward slashes in the qualified name (Java uses periods for both). The forward slash

notation is actually a convenience. A domain can also be specified using backslashes. For

example:

Fundamentals 29

 <jag domain="doc \ \ code \ \ chap2">

Because a backslash must be escaped inside a string, this notation is a little inconvenient,

so the forward slash convention is usually used instead. When using a qualified class

name in code however, only the backslash notation is allowed, as forward slashes are

treated as the division operator.

The rest of the script defines a simple class called HelloWorld . A class represents a user-

defined type, and is a way of packaging data (fields) and behavior (methods) so that it

can be conveniently used elsewhere in the program. A JavaGram program is simply a

collection of classes that refer to one another.

Itôs worth noting that, unlike Java, the name of a JavaGram class and its script file need

not match. You can also put multiple classes in the same script file. For each class,

JavaGram internally records the script that contains it and uses this information to locate

the right script when needed.

The definition of a JavaGram class consists of the keyword class , followed by the class

name, followed by the class body. The latter is enclosed by a pair of braces:

class HelloWorld {

 ...

}

A class name must be a valid identifier (a sequence of letters, digits, or underscores, but

not starting with a digit). The recommended convention in JavaGram is to capitalize the

first letter of every word of a class name.

The HelloWorld class contains just one method called main :

 public static void main () {

 sys . println ("Hel lo World!");

 }

Like a class name, a method name must be a valid identifier. The recommended

convention is to write method names in camel case (capitalize the first letter of every

word except for the first word).

A method is a recipe for computation ï a sequence of instructions to do something. The

keywords public and static appearing at the beginning of the method are called

qualifiers. A qualifier imposes a certain rule on the thing that it qualifies. For example,

the public qualifier gives main public visibility, so that it can be accessed outside the

class; and the static qualifier makes the method accessible even without having class

instances (more on this later).

30 JavaGram Agile Development

Every method must have a return type (this appears before the method name) which

specifies the type of value the method will return when itôs called. The return type void is

a pseudo type, implying the absence of a value. In other words, main does not return

anything.

The empty pair of parentheses appearing after the method name means that main has no

parameters. The qualifiers, return type, name, and parameters of a method are collectively

called its signature, so main has the following signature:

public static void main ()

Finally, the body of the method appears last and (like a class body) is enclosed by a pair

of braces. Generally, the body of a method consists of statements, where each statement

specifies a specific instruction or computation. Being a very simple method, main has just

one statement:

 sys .println("Hello World!");

The effect of this statement is to write the string "Hello World!" to standard output.

(Standard output is a predefined stream, normally tied to the screen in which you run

your program, causing output to be displayed in that screen.) This statement is itself a call

to a method (println) of another class (sys). The latter is a pseudo class built into JAG.

The term ópseudo classô applies to predefined classes that behave like normal classes but

canôt be instantiated or extended.

In JavaGram, every statement must be terminated by a semicolon. A semicolon on itself

is also considered a statement (an empty statement).

As a rule, if a class has a main method that is public static void and with no parameters

(as HelloWorld does) then this method is treated specially ï when such a class is loaded,

this method is automatically called. This is usually the starting point of execution for a

program.

2.2 Loading Scripts

Before it can be executed, a script must be loaded into JAG. There are three ways for

loading a script:

¶ As a command line argument to JAG.jar . Use this method to run the initial script of a

JavaGram program.

¶ Using the <load> markup inside a script. Use this method to document the

dependencies of a script on other scripts. This is called static loading ï when the

enclosing script is loaded, it causes the enclosed scripts to be also loaded.

¶ Using the sys.load() function. Use this method for dynamic loading of a script

during program execution. The script is loaded only when the sys.load() function is

executed. This is useful when you want to delay the loading of a script until itôs

Fundamentals 31

actually needed; for example, in response to the user pressing a button that initiates a

calculation, which is to be performed by the nominated script.

When you load a script using any of these methods, JavaGram processes the script in

three successive stages, as illustrated below.

During parsing, the script is checked for syntactic correctness. If syntactically correct, the

script is analyzed for semantic validity. Finally, if both these stages succeed, the script is

evaluated by evaluating its classes in the order in which they appear. The evaluation of a

class causes its static fields and static blocks to be evaluated. Also, if the class has a

public static void main method, it may be evaluated, depending on the load

configuration (this is always the case when loading from the command line).

Here is an example of how to load a script using the <load> markup.

CarTest.jag

<jag domain="doc/code/chap2">

<load >

 "doc/code/chap2 /Car"

</load>

class CarTest {

 public static void main () {

 Car car = new Car("Toyota", "Camry", 2007);

 sys . println (car.format());

 }

}

</jag>

It refers to another script which defines the class Car .

Car .jag

<jag domain="doc/code/ chap2">

class Car {

 protected string make;

 protected string model;

 protected int year;

 public Car (string make, string model, int year) {

 this .make = make;

 this .model = model;

 this .year = year;

 }

 public stri ng format () {

 return make + " " + model + " " + year;

 }

32 JavaGram Agile Development

}

</jag>

You can run this program using the command line:

java - cp JAG.jar jag.run.Env - root C:/JavaGram doc/code/ chap2/ CarTest.jag

It produces the following output.

Toyota Camry 200 7

Note how weôve used the ïroot option to specify a root directory for scripts. By default,

scripts appearing inside the <load> markup are relative to this directory. So

doc/code/chap2/C ar.jag resolves to C:/JavaGram/doc/code/ chap2 /Car.jag .

You can specify multiple file paths within a <load> markup, each of which must be a

string. The strings must be separated by whitespace. The recommended convention is to

put each file path on a separate line.

Letôs discuss the contents of these two scripts and their meaning.

Car is a simple class that has three fields (make, model , year) and two methods (Car ,

format). Fields are used to hold data. As with methods, fields may have qualifiers ï all

three fields here are declared to be protected . This qualifiers means that these fields are

not visible outside the class; theyôre only visible to the class members and members of

any classes derived from Car (derived classes are described later). Every field must have a

type which specifies the kind of data that the field can hold. Both make and model are

specified to be of type string (arbitrary sequence of characters enclosed in double

quotes) and year is specified to be of type int (integer number). A field name must be a

valid identifier. Like methods, the recommended convention is to write field names in

camel case.

The first method of the Car class has the same name as the class itself. This method is

called a constructor. You never specify a return type for a constructor because the return

type is implicit and is the class itself. Constructors are used to create instances of a class.

The distinction between a class and its instances is very important and fundamental to

understanding object-oriented programming. A class represents a potentially infinite

number of possibilities. For example, the Car class represents any car. However a specific

car (e.g., a 2009 Nissan Patrol) is represented by an instance of the Car class. Therefore, a

class is an abstraction (a concept) whereas its instances are concrete things (also called

objects) ï hence the term óobject-oriented programmingô. When a class instance (object)

is created, a piece of memory is allocated to represent the object. The data for the class

fields is actually stored in this piece of memory.

Letôs look at the definition of the Car constructor:

Fundamentals 33

 public Car (string make, string model, int year) {

 this .make = make;

 this .model = model;

 this .year = year;

 }

This method takes three parameters. These appear after the method name, within a pair

of parentheses, and separated by commas. Each parameter consists of its type and an

identifier. The job of this constructor is to assign a value to each of the three class fields

using a corresponding parameter. The assignments are done using the = operator, which

copies the value represented by its right operand to the location represented by its left

operand (this is called an lvalue ï something that can appear on the left-side of an

assignment). Because the parameters have the same name as the class fields, weôve used

the this. id notation to refer to the fields. So, for example, the first assignment this.make

= make copies the value of the make parameter to the make field. this is a reserved word

that can only be used in non-static methods ï it refers to the object on which the method

is invoked.

As an aside, the initial value of class fields (that havenôt been explicitly initialized at the

time of definition) is somewhat different to Java. In Java, an int field, for example, has

an initial implicit value of 0, and a String field has an initial value of null . In JavaGram,

every field, regardless of its type, has an initial value of null .

The second method (format) returns a string representation of a car.

 public string format () {

 return make + " " + model + " " + year;

 }

The string is produced using the string concatenation operator +. This operator can take

operands of various types (e.g., strings, numbers) and joins together their string

equivalent. The return keyword causes the resulting string to be returned as the overall

value of the method.

The main method of the CarTest class illustrates how the Car class may be used.

 public static void main () {

 Car car = new Car("Toyota", "Camry", 2007);

 sys . println (car .format());

 }

The first statement in this method uses the new operator to instantiate the Car class to

create an object. This operator must always be followed by a call to a constructor method.

Because the constructor for Car has three parameters, a call to it must provide three

arguments. The types of these arguments must match the types of the corresponding

parameters. The newly created object is assigned to a local variable (car).

34 JavaGram Agile Development

The second statement invokes the format method on the object represented by car . The

resulting string is then passed to sys.println to write it to standard output.

2.3 Expressions and Statements

The body of a method always consists of zero or more statements. These statements

represent the computational steps of the method or, in other words, its implementation.

Statements are composed hierarchically ï simpler statements may be combined to

produce more complex ones. When a statement is executed, it produces a side-effect,

such as altering the value of a variable, creating an object, or reading/writing data from/to

a stream.

Statements utilize another building block called expressions. Expressions also represent

computations but theyôre different from statements in that they do not produce side

effects; they simply produce values. For example,

 10 + 20

is an expression (it simply adds two numbers to produce a new value) whereas,

 int n = 10 + 20;

is a statement because it stores the result of adding two numbers (an expression) in a

variable, thus altering the value of the variable (a side effect).

The reason this distinction is important is that the JavaGram syntax expects you to use

expressions in some places (e.g., the logical condition of an óifô statement) and statements

in other places (e.g., the óthenô part of an óifô statement), so you need to know which one

to use where. To make matters more confusing, some constructs can be used in either

capacity. For example, a call to a non-void method can be used either as an expression or

as a statement. So, in this case at least, the earlier observation that expressions donôt

produce side effects is not entirely true. It would be more accurate to say that most

expressions donôt cause any side effects.

As you read through the rest of this book, if you want to learn more about any topic, look

it up in the reference chapters. For example, to find out more about the methods of the

sys pseudo class, refer to their specification in Chapter 10. You might also find Chapter

15 useful ï it describes the JavaGram syntax.

The rest of this chapter introduces the commonly used expressions and statements of

JavaGram using some simple examples that illustrate their purpose.

2.4 Types

The notion of type is fundamental to a proper understanding of programming.

Simplistically, a type represents a set of possible values. For example, the int type covers

Fundamentals 35

all integers. The relationship between a type (something abstract) and a value (something

concrete) is the same as the relationship between a class and its instances.

JavaGram is a strongly typed language, implying that:

¶ Whenever you create a variable, you must specify its type. JavaGram will not allow

you to store a value in the variable that doesnôt belong to its type.

¶ When you invoke a method, the type of each argument you pass to the method must

match the type of the corresponding parameter.

JavaGram comes with a number of predefined types (see Chapter 10 for details). These

represent types that you need in almost every program, so theyôve been built into the

language to ensure an efficient runtime implementation.

A JavaGram class is also considered to be a type and is called a user-defined type. In

fact, classes are the mechanism through which the JavaGram type system is extended. In

this sense, when you write a program, what youôre really doing is expanding the type

system. There is also a set of standard library classes (see Chapter 13) that provide

various useful types for use in your projects. These not only save you time but also serve

as óbest practiceô because they encourage the use of proven design patterns.

If youôre new to object-oriented programming then the concept of type could take some

time to get used to, but this investment is vital if youôre to take full advantage of the

power of object-oriented programming. Weôll cover this topic in more detail in the next

chapter.

2.5 Control Flow

Any non-trivial program has to deal with possibilities ï if a certain condition holds then

do this, otherwise do something else. This type of conditional behavior is realized by

statements that allow the program to take different execution paths based on logical

conditions. This concept is called control flow (or flow of control).

The simplest control flow statement is the if statement. Letôs look at a simple example

that illustrates its use. Consider the following class which represents bank accounts.

<jag domain="doc/code/chap2">

class BankAcc {

 real balance;

 static final real CREDIT_RATE = 0.045;

 static final real DEBIT_RATE = 0.065;

 public BankAcc (real balance) {

 this .balance = balance;

 }

 public void applyInterest () {

 if (balance >= 0)

 balance += balance * CREDIT_RATE;

36 JavaGram Agile Development

 else

 balance += balance * DEBIT_RATE;

 }

 public static void main () {

 BankAcc acc1 = new BankAcc(500) ;

 BankAcc acc2 = new BankAcc(- 200);

 acc1.applyInterest();

 acc2.applyInterest();

 sys . println ("Acc1 balance is ", acc1.balance);

 sys . println ("Acc2 balance is ", acc2.balance);

 }

}

</jag>

The applyInterest() method uses an if statement to decide which interest rate to use,

based on the account balance. For an account in credit it uses CREDIT_RATE and for one in

debit, it uses DEBIT_RATE. The condition appearing after the if keyword must be a boolean

condition (something that evaluates to true or false). When it evaluates to true, the

statement after it is executed; otherwise, the statement after else is executed (the else

part is optional).

If you run this program, it will produce the following output.

Acc1 balance is 522.5

Acc2 balance is - 213.0

Here are a few more observations about this program:

¶ The balance field has no explicit visibility qualifier, therefore itôs deemed to have

domain visibility ï itôs accessible by all classes defined in the same domain as this

class.

¶ CREDIT_RATE and DEBIT_RATE are both defined to be static and final . This is how you

define constants in JavaGram. A final field must be initialized at the time of its

definition; its value cannot be subsequently altered. A static field is shared between

all instances of its parent class. So each time you create an instance of BankAcc ,

memory is allocated for the balance field but not for CREDIT_RATE and DEBIT_RATE.

¶ The += operator adds its left and right operands and stores the outcome in the left

operand (which must be an lvalue).

¶ sys.print ln() accepts a variable number of arguments (zero or more), and sends the

string equivalent of each argument to standard output.

¶ The text starting with // is called a comment. JavaGram ignores anything appearing

after // until the end of the line. Comments are useful for documenting additional

information about a program. There is another style of writing comments that can

span multiple lines: anything appearing between /* and */ is treated as a comment.

Fundamentals 37

There is also an expression form (called conditional expression) that can be used to

rewrite certain if-else statements more succinctly. For example, we can rewrite

applyInterest() in the following equivalent style.

 public void applyInterest () {

 balance += balance * (balance >= 0 ? CREDIT_RATE : DEBIT_RATE);

 }

In a conditional expression, the condition is always followed by a question mark,

followed by the óthenô expression, followed by a colon, followed by the óelseô expression.

The overall value of the expression is the óthenô expression if the condition evaluates to

true, and the óelseô expression otherwise.

Another form of conditional statement is when we want to compare a value against a

number of different possibilities, and take action accordingly. This is facilitated by the

switch statement. To show its use, consider the following class.

<jag domain="doc/code/chap2">

class Calculator {

 static real calc (char op, real val1, real val2) {

 switch (op) {

 case '+': ret urn val1 + val2;

 case ' - ': return val1 - val2;

 case '*': return val1 * val2;

 case '/': return val1 / val2;

 default :

 sys . println ("Unknown operator: ", op);

 break ;

 }

 return null ;

 }

 static void main () {

 sys . println (calc ('+', 10, 20));

 sys . println (calc ('*', 10, 2.4));

 }

}

</jag>

The calc() method takes three parameters: a character that represents an arithmetic

operator, and two real numbers. It uses a switch statement to determine what to do based

on the value of op. What appears after the switch keyword (within parentheses) is called a

selector. Each possibility is specified by a case, which consists of the keyword case ,

followed by a literal (of the same type as the selector), followed by a colon, followed by

zero or more statements. The selector is compared against the case values, and the

statements for the matching case are executed. The final case (default) is optional and,

when present, acts as a ócatch allô ï if none of the earlier cases match the selector then

this one is exercised instead.

38 JavaGram Agile Development

Running this program produces the following output.

30.0

24.0

Some further observations about this program:

¶ Because calc() is a static method, it can be invoked without having an instance of the

class, as illustrated in main() .

¶ A character literal is always delimited by a pair of single quotes.

¶ When a matching case of a switch is executed, execution continues to the statements

for the next case and so on, unless the switch is exited using a break statement, or the

whole method is exited using a return statement. The break statement at the end of

the default case is evidently redundant, but is considered good coding practice.

This program doesnôt cater for the possibility of division by zero. A call such as

calc('/', 10, 0) will result in the following.

é/code/chap2/Calculator.jag (line 10 col 25- 26) ERROR: division by zero

 10 case '/': return val1 / val2;

 ^

We can cater for this case using an if statement:

 static real calc2 (char op, real val1, real val2) {

 switch (op) {

 case '+': return val1 + val2;

 case ' - ': return val1 - val2;

 case '*': return val1 * val 2;

 case '/':

 if (val2 == 0)

 break ;

 return val1 / val2;

 default :

 sys . println ("Unknown operator: ", op);

 break ;

 }

 return null ;

 }

Itôs worth noting that the type of values you can use for a switch selector (and the literals

for the cases) must be integer, character, or symbol. Weôve already seen examples of

numbers, characters, and string literals. A symbol literal consists of the $ character

followed by an identifier. For example: $name, $address , $id .

Here is a revised version of the Calculator class using symbols instead of characters.

Fundamentals 39

 static real calc3 (symbol op, real val1, real val2) {

 switch (op) {

 ca se $add: return val1 + val2;

 case $subtract: return val1 - val2;

 case $multiply: return val1 * val2;

 case $divide:

 if (val2 == 0)

 break ;

 return val1 / val2;

 default :

 sys . println ("Unknown operator: ", op);

 break ;

 }

 return null ;

 }

In many ways, symbols can be thought of as pseudo identifiers, which makes them useful

for storing identifiers in variables, objects, etc. For such uses, theyôre superior to strings ï

they consume less memory and they can be more efficiently compared. For example, if a

string (such as "name") appears 20 times in a program, JavaGram actually creates 20

separate representations of it in memory. Whereas if a symbol (such as $name) appears 20

times in a program, JavaGram creates only one instance of it, causing all occurrences to

point to the same representation.

To appreciate the comparison efficiency, consider the following cases.

 " name" == "name" // gives true

 $name == $name // gives true

The == operator checks for equality. Now consider the identicity operator.

 "name" === "name" // gives false (stored in separate places)

 $name === $name // gives true (stor ed in the same location)

This operator returns true only when its two operands point to the same thing. Itôs exactly

this reason that makes symbols suitable for use in a switch .

2.6 Iteration

A common programming task is to repeat a certain computation many times (e.g.,

calculate the interest for each account held at a bank). This is called iteration and is

supported by various forms of loop statements.

As an example, letôs consider the task of calculating the factorial of a number. The

factorial of a number n (written as n!) is defined by these rules:

¶ Factorial of 0 is 1.

¶ Factorial of n is n times factorial of n-1.

40 JavaGram Agile Development

So, for example:

 5! = 5 × 4 × 3 × 2 × 1 = 120

Here is a simple class that uses a loop to implement factorial.

<jag domain="doc/code/chap2">

class Factorial {

 public static int factorial (int n) {

 int f = n == 0 ? 1 : n;

 while (n > 1) {

 f *= n - 1;

 n - = 1;

 }

 return f;

 }

 public static void main () {

 sys . println ("factorial(5) = ", facto rial (5));

 }

}

</jag>

The while loop in the factorial() method iterates through decreasing values of n. The

loop condition (n > 1) is first evaluated. If this condition evaluates to true then the loop

body (appearing within a pair of braces) is executed. Otherwise, the loop is terminated.

Each time round the loop, f is multiplied by the next value (n - 1) and n is decremented

in preparation for the next iteration.

Running this program produces the following output.

factorial(5) = 120

Incrementing and decrementing an integer are such common tasks that there are specific

operators for them: ++ (auto increment operator) increments an integer by 1 and -- (auto

decrement operator) decrements an integer by one. We can use the auto decrement

operator to write factorial() more succinctly:

 public static int factorial2 (int n) {

 assert n >= 0;

 int f = n == 0 ? 1 : n;

 while (n > 1)

 f *= -- n;

 return f;

 }

The auto increment/decrement operator can appear before or after an lvalue. If it appears

before (as in the above example), the lvalue is incremented/decremented first and then its

Fundamentals 41

resulting value is used. Conversely, if it appears after, the lvalue is used and then itôs

incremented/decremented.

Also note that, because the while loop now has a single statement as its body, there is no

need to use braces to enclose it.

Finally, weôve added an assert statement to the beginning of the method to guard against

situations where n is negative. An assert is always followed by a logical condition. If the

condition evaluates to false, an error is raised.

There is a variant of the while loop called the do-while loop. Itôs useful for situations

where we want the loop body to execute at least once. Unlike the while loop, a do-while

loop first executes the loop body and then evaluates the loop condition. Here is a simple

class that illustrates its use.

<jag domain="doc/code/chap2">

class Prime {

 public static boolean isPrime (int n) {

 assert n > 0;

 int i = 2;

 do {

 if (n % i == 0)

 return false ;

 } while (++i < n/2);

 return true ;

 }

 public static void main () {

 sys . println ("isPrime(13) = ", isPrime (13));

 sys . println ("isPrime(111) = ", isPrime (111));

 }

}

</jag>

The method isPrime() returns true when its parameter (n) denotes a prime number. A

prime number is one thatôs divisible only by itself and 1. Weôve used a very simple

algorithm here which iterates i from 2 to n/2, and checks to see if n is divisible by i . The

latter is done using the remainder operator (%) which gives the remainder of dividing n by

i .

Note how weôve declared the return type of the method to be boolean . This type covers

only two possible values: true and false .

When run, the program produces the following output.

isPrime(13) = true

isPrime(111) = false

42 JavaGram Agile Development

The final form of loop to be discussed here is the for loop. We can rewrite the isPrime()

method more succinctly using this loop.

 public static boolean i sPrime2 (int n) {

 assert n > 0;

 for (int i = 2; i < n/2; ++i) {

 if (n % i == 0)

 return false ;

 }

 return true ;

 }

The parentheses appearing after the for keyword can accommodate three parts (separated

by semicolons) every one of which is optional. The first part is performed only once

when the loop commences execution. This is typically an assignment, but more

commonly a locally declared variable thatôs initialized to a value (as is the case in the

above loop). The second part is the loopôs logical condition. The last part is a step thatôs

performed at the end of each iteration (before the loop condition is re-evaluated).

Note that because i is declared as the loopôs local variable, it remains only visible within

the loop, so it cannot be referred to outside the loop.

The simplest form of for loop is one where all the optional parts are missing.

 for (;;) {

 // ...

 }

The effect of this loop is to iterate indefinitely; itôs equivalent to the following while

loop.

 while (true) {

 //...

 }

2.7 Composites

The term composite refers to a data structure that can hold multiple values. By contrast,

simple data items (such as numbers, strings, symbols) are called atomic because they

cannot be broken down into smaller things. Weôve already seen one form of composite

data: class instances. The second form is called containers.

2.7.1 Containers

Containers are exceptionally useful for everyday programming, so much so that

JavaGram has built-in notations to support them.

There are three different types of containers:

Fundamentals 43

¶ A list is an ordered sequence of items. Internally, a list is implemented as a linked list

of items (i.e., each item has a pointer to the next item in the list). This makes lists

unsuitable for random access because, in order to get to an item, you have to iterate

through the earlier items in the list. The advantage of lists, however, is that they carry

very little storage overheads. That makes them ideal for reasonably short sequences

(i.e., up to tens of items).

¶ A vector is also an ordered sequence of items but with the added advantage of

random access. Given the zero-based position of an item in the vector, you can look it

up directly. Vectors are especially suitable for large data sets that require random

and/or frequent access.

¶ A map is a collection of items where each item (value) is accessed through a key. The

items are maintained in ascending lexicographic key sort order. Conceptually, you

can think of each entry in the map as a key/value pair. Maps support random access ï

given a specific key, you can look up the corresponding value.

Containers are very flexible in that the items in a container can themselves be containers.

So, for example, you can have a map whose keys are symbols and whose values are

vectors, or a vector whose items are themselves vectors, and so on.

You would have noticed that with the atomic types, you can specify a value either

literally (e.g., 10) or programmatically (e.g., i + 10). The same is true of container types.

2.7.2 Lists

All lists are of type list . Here is a simple list of three numbers:

 list nums = $(10, 20, 30) ;

List literals are always delimited by parentheses, and the individual items are separated

by commas. However, if a list literal is not inside another literal, its first parenthesis must

be preceded by a $ (as in the above example) to avoid ambiguity.

To access the items in a list, you can use the sys.head() and sys.tail() methods. For

example:

 sys . head (nums) // gives 10

 sys . tail (nums) // gives (20, 30)

 sys . head (sys . tail (nums)) // gives 20

Alternatively, you can use the [] operator to access list members. For example:

 nums[1] // gives 20

You can also create a list dynamically using the sys.pair() method. For example:

 list nums = sys . pair (10 , sys . pair (20, sys . pair (30, null)))

44 JavaGram Agile Development

The inner-most call, sys.pair(20, null) , creates the list (30) and the outer calls add 20

and then 10 in front of this list to produce (10, 20, 30) . A much easier way of doing the

same is to use the list() operator:

li st nums = list (10, 20, 30);

As a rule, the end of a list is always marked by a null (which is also a shorthand for an

empty list). Also, for programming convenience, applying sys.head() or sys.tail() to

null will produce null .

The elements of a list need not be of the same type ï they can be anything. For example:

 list ls = $(1, "man", "bites", ($animal, "dog"), 3, "times")

Note how the inner list has no preceding $, because it appears inside another literal.

2.7.3 Vectors

The basic type for a vector is vect or . Here is a simple vector literal of three numbers:

 vector nums = [10, 20, 30]

Vector literals are always delimited by square brackets, and the individual items are

separated by commas. As with lists, the elements of a vector need not be of the same

type, but you can enforce a specific element type where desirable. For example, the above

list is better written as

 vector <int > nums = [10, 20, 30];

because it explicitly states that the elements are expected to be of type int . In this case,

should the vector contain a non-integer element, an error will be raised.

You can access an element of a vector using its zero-based index. For example:

 nums[1] // gives 20

The sys pseudo class provides a number of methods for inserting, removing, and finding

vector elements, as exemplified below.

 sys . insert (nums, 2, 25) // inserts 25 at position 2

 sys . append (nums, 40) // appends 40 to the end of the vector

 sys . find (nums, 30) // returns the index of 30 (ie, 2)

 sys . remove (nums, 1, $at) // removes the el ement at position 1

sys . member(nums, 30) // gives true

 sys . length (nums) // gives the number of elements in the vector

 sys . clear (nums) // removes all the vector elements

Fundamentals 45

Letôs look at a real-life example that illustrates the use of both vector and list. The

following class is intended to capture directions in order to get from one location to

another, in the style: go 5km east, then 7km south, then 12km west, etc. It uses a vector of

lists (called legs) to capture the individual legs of a journey, where each leg is of the form

(direction, distance).

<jag domain="doc/code/chap2">

class Direction {

 vector <list > legs @= vector ();

 public void addLeg (symbol dir, real dist) {

 sys . append (legs, list (dir, dist));

 }

 public real tot alDistance () {

 real total = 0;

 for (int i = 0, n = sys . length (legs); i < n; ++i)

 total += legs[i][1] @ real ;

 return total;

 }

 public real shortestDistance () {

 real east = 0;

 real north = 0;

 for (list leg in legs) {

 real dist @= leg[1];

 switch (leg[0]@ symbol) {

 case $north: north += dist; break ;

 case $south: north - = dist; break ;

 case $east: east += dist; break ;

 case $west: east - = dist; break ;

 }

 }

 return sys . sqrt (east * east + north * north);

 }

 public static void main () {

 Direction d = new Direction ();

 d.addLeg($north, 12.5);

 d.addLeg($west, 7. 2);

 d.addLeg($south, 2.6);

 d.addLeg($east, 20.1);

 sys . println ("Total distance = ", sys . format (d.totalDistance(), "0.00km"));

 sys . println ("Shortest distance = ", sys . format (d.shortestDistance(), "0.00km"));

 }

}

</jag>

The method addLeg() adds a new leg to the journey by appending a new list to the end of

the legs vector. The method totalDistance() uses a for-loop to iterate through the legs

vector and adds up the distance of each leg. A couple of points worth noting about this

method:

46 JavaGram Agile Development

¶ Note how two (comma-separated) local variables are defined for the for-loop. This is

a useful coding pattern to remember as it avoids the length of the vector being

calculated for each iteration, which would have been the case, had it been coded as:

for (int i = 0; i < sys . length (legs); ++i) .

¶ When adding the legôs distance to total (inside the loop) the value is first converted

to real using the type cast operator @. This is necessary because a listôs elements are

un-typed.

This is a good time to introduce the for -in loop ï a variant of the for-loop thatôs

particularly well suited to iterating through a container. Using it, totalDistance() can be

written more elegantly:

 public real totalDistance2 () {

 real total = 0;

 for (l ist leg in legs)

 total += leg[1] @ real ;

 return total;

 }

A for-in loop must always have a local variable (e.g., leg) and a container (e.g., legs).

The latter must be a vector, map, or GUI container. Each time round the loop, the

variable points to the next container element.

The shortestDistance() method calculates the shortest distance between the start and end

points. It uses a for-in loop and a switch to work out how far (in total) weôve moved north

and east, and then uses the Pythagoras theorem to calculate the shortest distance. The

sys.sqrt() method calculates the square root of a number.

The line before the switch uses the @= operator to cast the right side of the assignment to

the type expected by the lvalue on the left side, before performing the assignment. This is

more elegant than writing:

 real dist = leg[1] @ real ;

When executed, the program produces the following output.

Total distance = 42.400000000000006

Shortest distance = 16.260996279441187

These numbers look a little bit ugly (too many decimal places) and have no unit. We can

use the sys.format() method to limit them to, say, two decimal places and express them

in kilometers:

sys .println("Total distance = ", sys.format(d.totalDistance(), "0.00km"));

sys .print ln("Shortest distance = ", sys.format(d.shortestDistance(), "0.00km"));

Fundamentals 47

This will change the output to something more user friendly:

Total distance = 42.40km

Shortest distance = 16.26km

2.7.4 Maps

The basic type for a map is map. Here is a simple map that associates peoples name with

their age:

 map age = ["Adam"=>20, "Paul"=>28, "Linda"=>18];

Map literals are always delimited by square brackets, and the pairs are separated by

commas. The keys (e.g., "Adam") and values (e.g., 20) of a map need not be all of the same

type, but you can enforce a specific key and/or value type where desirable. For example,

the above map is better written as

 map<string , int > age = ["Adam"=>20, "Paul"=>28, "Linda"=>18];

because it explicitly states that the keys are expected to be of type string and the values

of type int . In this case, should the map contain any other type of key or value, an error

will be raised.

You can look up a value in a map using its key. For example:

 age ["Linda"] // gives 18

The same notation can be used to store a key/value pair in a map, or to overwrite an

existing one:

 age["Linda"] = 19 // changes Lindaôs age to 19

 age["Jane"] = 30 // add s a new key/value pair

The keys in a map must be atomic, but the values can be anything. If you want to specify

the type of keys or values but not the other, use the vague type (which stands for an

unspecified type). For example:

 map<symbol , vague > person = [$name=>"John", $age=>22, $male=>true]

In fact, the type map is equivalent to map<vague,vague> and ve ctor is equivalent to

vector<vague> .

A map whose keys are symbols has some similarity to an object, so JavaGram allows you

to use the dot notation instead of [] to access it. For example:

 person.$name // same as: person[$name]

 person.$name = "Alan" // same as: person[$name] = "Alan"

48 JavaGram Agile Development

The sys pseudo class provides a number of methods for use with maps, as exemplified

below.

 sys . remove (person , $age) // removes the $age key and its value

 sys . length (person) // gives the number of elements in the map

sys . member($age, person) // gives true if the key is in the map

sys . mapKeys(person) // gives: [$age, $male, $name]

sys . mapValues (person) // gives: [22, true, "John"]

sys . clear (person) // removes all the map elements

Internally, maps are maintained in ascending lexicographic key sort order. So, for

example, if you print a map using sys.print() , the elements will appear in ascending key

sort order. Similarly, sys.mapKeys() returns the keys in ascending sort order.

Letôs look at a program that demonstrates the versatility of maps. The following class

scans the file hierarchy in a directory and, for each file, counts the number of lines,

words, and characters. It uses a map (counter) to keep track of these statistics for each

scanned file.

<jag domain ="doc/code/chap2">

class WordCount {

 map<string , map<symbol , int >> counter @= map();

 public void scanDir (string path) {

 for (string file in sys . listDir (path)) {

 string filePath = sys . pathConc (path, file);

 if (sys . pathProps (filePath)[$type] == $dir)

 scanDir(filePath);

 else

 scanFile(filePath);

 }

 }

 public void scanFile (string path) {

 stream s = sys . open (path, "r");

 string line;

 int nLin es = 0, nWords = 0, nChars = 0;

 while ((line = sys . readln (s, false)) != null) {

 ++nLines;

 nWords += countWords(line);

 nChars += sys . length (line);

 }

 counter[path] = map($lines=>nLines, $words=>nWor ds, $chars=>nChars);

 sys . close (s);

 }

 protected int countWords (string line) {

 int n = 0;

 for (string str in sys . strSplit (line, " ")) {

 if (sys . length (sys . strTrim (str, true)) > 0)

 ++n;

Fundamentals 49

 }

 return n;

 }

 public void clear () {

 sys . clear (counter);

 }

 public void output () {

 vector <string > files @= sys . sort (sys . mapKeys(counter));

 map<symbol , int > total = map($lines=>0, $words=>0, $chars=>0);

 fo r (string file in files) {

 map<symbol , int > count = counter[file];

 sys . println ($"{file}: lines: {count[$lines]}, words: {count[$words]},

 chars: {count[$chars]}");

 for (symbol s in total)

 total[s] += count[s];

 }

 sys . println ($"Total: lines: {total[$lines]}, words: {total[$words]},

 chars: {total[$chars]}");

 }

 public static void main () {

 WordCount wc = new WordCount ();

 wc.scanDir(sys . pathConc (sys . root , "doc /code/chap2"));

 wc.output();

 }

}

</jag>

The scanDir() method takes the path of a directory as parameter and uses sys.listDir()

to get a list of all files/directories in that directory. sys.pathConc() is used to concatenate

the parent directoryôs path with each file/directory name to produce an absolute path.

sys.pathProps() returns the properties of a path as a map which contains, amongst other

things, a $type key that points to $file or $dir , depending on whether itôs a file or

directory. For a directory, we call scanDir() recursively; and for a file, we call

scanFile() .

To scan a file, scanFile() opens the file using sys.open() . The second argument to this

method ("r") stands for óread modeô. This method returns a stream (a built-in JavaGram

type that can be used for I/O with respect to files, buffers, channels). sys.readln() is used

to read the next line of the file, which it returns as a string. The second argument to this

method indicates whether the end-of-line (EOL) character should be included (set to

false to exclude EOL). When we reach the end of the file, this method returns null . For

each line, we increment three local counter variables, which are then used after the loop

to add a new map to the counter map. Finally, we close the stream using sys.close() .

countWords() counts the number of words in a line. Weôve used a very simple algorithm

here: sys.strSplit() splits the line into its space-separated sub-strings. A sub-string is

considered a word if after trimming it of blanks it remains non-empty.

50 JavaGram Agile Development

The output() method formats and writes the result of a scan (as denoted by the counter

map) to standard output. The files are first sorted in alphabetic order using sys.sort() . A

for-loop is then used to iterate through the files, outputting the counters for each file and

at the same time building up totals in the totals map.

For outputting the file counters as well as the total counters, weôve used delayed strings.

A delayed string is like a normal string but is preceded by a $ character. For example:

$"{file}: lines: {count[$lines]}, words: {count[$words]}, chars: {count[$chars]}"

Within a delayed string, anything enclosed by a pair of braces is treated as an expression.

When the delayed string is evaluated, these expressions are individually evaluated and

their values are spliced into the string.

Running this program will produce output similar to the following.

C:/JavaGram/doc/code/chap2/BankAcc.jag: lines: 27, words: 91, chars: 646

C:/JavaGram/doc/code/chap2/Calculator.jag: lines: 53 , words: 173, chars: 1092

C:/JavaGram/doc/code/chap2/Car.jag: lines: 16, words: 53, chars: 296

C:/JavaGram/doc/code/chap2/CarTest.jag: lines: 13, words: 25, chars: 190

C:/JavaGram/doc/code/chap2/Direction.jag: lines: 45, words: 167, chars: 1152

C:/JavaGram /doc/code/chap2/Factorial.jag: lines: 24, words: 87, chars: 420

C:/JavaGram/doc/code/chap2/HelloWorld.jag: lines: 7, words: 16, chars: 115

C:/JavaGram/doc/code/chap2/Prime.jag: lines: 28, words: 96, chars: 557

C:/JavaGram/doc/code/chap2/WordCount.jag: line s: 55, words: 185, chars: 1481

Total: lines: 789, words: 1675, chars: 11467

2.7.5 Object Literals

An unusual feature of JavaGram is that it allows class instances to be specified as literals.

This is useful when you want to pre-create objects in code (load time) to represent things

such as meta data, rather than during execution (run time). Another benefit of this

approach is that it makes it very easy to serialize objects (in order to persist them to a file

or database) and to subsequently parse them (upon retrieval from the file or database). By

the same token, when you write an object to standard output, JavaGram outputs the object

as a literal, making it very easy to read and understand.

Recall the Direction class presented earlier in this chapter. You can use sys.println() on

the sample object to get its literal representation:

 Direction d = new Direction ();

 //...

 sys . println (d);

This will display the following:

[@doc\ code \ chap2 \ Direction legs=>[($north, 12.5), ($west, 7.2), ($south, 2.6),

($east, 20.1)]]

Fundamentals 51

Note the similarity to the map literal notation, except that:

¶ The qualified class name appears at the beginning preceded by the @ character to

specify the object type. The reason for the qualified rather than short class name is

that this notation needs to be transportable.

¶ Each object field (there is only one here: legs) is mapped to its literal value. Unlike

maps, however, the keys are the actual field identifiers, not literals.

Creating objects directly using this notation is easy. For example:

 Di rection dir = [@ Direction legs=>[($west, 13.1), ($south, 1.9)]];

Weôve used the short class name here, assuming that the class domain is visible. Upon

parsing this code, JavaGram expands the short name to a qualified name. Just as vectors

and maps have special operators for dynamic creation, you can use the object operator to

create an object dynamically and directly. For example:

 Direction dir = object (Direction , legs=>[($west, 13.1), ($south, 1.9)]);

If you want to get the string equivalent of an object, you can use the sys.serialize()

method. For example,

 string str = sys . serialize (dir) ;

sets str to:

 " [@doc\ code \ chap2 \ Direction legs=>[($west, 13.1), ($south, 1.9)]]"

Where explicit parsing is required (e.g., after reading an object literal from persistent

storage), you can use the sys.parse() method. For example,

 sys . parse (str)

returns the original object. The Object library class (described in Chapter 13) uses this

approach for managing the persistence of business objects. See also the sample

application (in Chapter 8) for a real-life example of how persistent business objects are

utilized.

When writing an object literal, you can leave any of the class fields unspecified ï these

are automatically set to null .

For efficiency and convenience, JavaGram uses a very direct method to manage the

creation of object literals. This means that class constructors (if any) are bypassed.

Therefore, if your constructors enforce important invariants or perform vital resource

management, these will not take place and remain your own responsibility.

52 JavaGram Agile Development

2.7.6 Literal versus Dynamic

As weôve seen, composite data can be specified either as literals or created dynamically.

So whatôs the difference?

The key difference is creation time. Literals are created when the code in which they

appear is loaded (i.e., óparseô and óanalyzeô steps, according to the diagram at the

beginning of this chapter). Dynamic data is created during the course of program

execution (i.e., óevaluateô step in the same diagram). As a result, literals are created only

once, because their code is loaded only once, whereas dynamic data is created every time

the corresponding code is executed. This is a subtle difference that can be easily

overlooked by newcomers to JavaGram, with potentially dire consequences. It is

somewhat similar to programmers confusing the behavior of static and non-static data.

Both these forms have their legitimate place in JavaGram programming, so you must be

mindful of using the appropriate form for a given situation.

Letôs illustrate the difference (and consequences of misuse) using an example. Recall the

definition of the WordCount.output() method:

 public void output () {

 vector <string > files @= sys . sort (sys . mapKeys(counter));

 map<symbol , int > total = map($lin es=>0, $words=>0, $chars=>0);

 //...

}

The total map in this method is created dynamically. What would happen if we change

this to a map literal?

 public void output () {

 vector <string > files @= sys . sort (sys . mapKeys(counter));

 map<symbol , int > total = [$lines=>0, $words=>0, $chars=>0];

 //...

}

Running this version will produce the same result as before. However, a subtle defect has

been introduced. If you call output() multiple times in the same run, the counters in total

will not start from zero, but will retain their value from the last call to output() .

Remember, a literal is created once at load time, so in each call to output() , total is set

to refer to this same map, not a new copy, causing alterations made to it in the previous

call to be retained!

When literals are misused, the resulting defects might not be immediately obvious and

could require further testing to detect. Literals are generally safe and recommended for

these situations:

¶ Read-only data

Fundamentals 53

¶ Meta data

¶ Persistence

2.8 Exception Handling

Weôve already seen how the assert statement can be used to impose invariants

(conditions that must hold). However, assertions have limited flexibility in that any

violation is reported as an error, with no further opportunity to handle the error.

Therefore, its use should be limited to scenarios where you want to guard against blatant

misuse.

There are other potential error situations that do not represent misuse but rather possible

set of circumstances that deserve to be detected and gracefully handled. These are called

exceptions. A simple example of this would be dealing with an invalid postcode in a

postal address. JavaGram provides an exception handling facility for such situations.

Letôs look at an example. Recall the WordCount.scanF ile() method from an earlier

example in this chapter. This method does not cater for a potential error situation: what if

the file is not accessible for reading? In this case, the method sys.open() will fail, causing

a runtime failure of the program. To cater for this situation, we can rewrite the method as

follows.

 public void scanFile2 (string path) {

 stream s = null ;

 try {

 s = sys . open (path, "r");

 string line;

 int nLines = 0, nWords = 0, nChars = 0;

 while ((line = sys . readln (s, false)) != null) {

 ++nLines;

 nWords += countWords(line);

 nChars += sys . length (line);

 }

 counter[path] = map($lines=>nLines, $words=>nWords, $c hars=>nChars);

 }

 catch (Exception e) {

 sys . println (sys . err , "Can't read file: ", path);

 }

 finally {

 if (s != null)

 sys . close (s);

 }

 }

Weôve used a try -catch-finally statement to detect such an exception and deal with it.

The effect of this is that the statements in the try block are evaluated. If an exception

arises, the catch blocks following it are examined. The first catch block whose exception

type matches the raised exception is executed. The finally block is executed last,

54 JavaGram Agile Development

regardless of whether an exception arises or not, and even if a return statement is

executed.

Note how weôve set the stream s to null before we enter the try block. If the sys.open()

call succeeds then s gets set to a valid stream. Otherwise, an exception is thrown and s

will remain null . Therefore, the finally block will only attempt to close the file if s is not

null . This simple code pattern ensures that there is no possibility of this method leaving

the file open due to an error.

Within the catch block, we simply report the fact that the file is not readable by writing a

message to standard error. Note how weôve passed sys.err as the first argument to

sys.println() . The former is a predefined stream and denotes the standard error stream.

JavaGram provides three predefined streams:

¶ sys.out denotes the standard output stream (usually associated with the screen).

¶ sys.err denotes the standard error stream (also usually associated with the screen).

¶ sys. in denotes the standard input stream (usually associated with the keyboard).

In our earlier uses of sys.println() , we never referred to any of these. Thatôs because

when no stream in specified, output methods such as sys.println() assume the standard

output stream. So, for example:

 sys . println ("Hello") // is equivalent to: sys.println(sys.out, "Hello")

A catch block must always have a signature similar to a method of one parameter, which

must be of type Exception or a sub-class of Exception (sub-classes are described in the

next chapter).

Exception is a predefined JavaGram class, having the following definition.

class Exception {

 protected string message;

 public Exception () {}

 public Exception (string msg) {message = msg;}

 public string getMessag e () { return message;}

}

As well as the exceptions raised by JAG (e.g., division by zero), the programmer can

detect error situations and throw an explicit exception. To do this, create an instance of

Exception and throw it, for example, like this:

 t hro w new Exception ("invalid postcode");

The general rule is that when a method throws an exception, itôs the responsibility of the

calling code to catch and deal with that exception.

Fundamentals 55

Once an exception has been caught by a catch block, it doesnôt propagate any further.

However, sometimes it makes sense to do something in a catch block in response to an

exception and then to propagate it by throwing it again. For example:

 catch (Exception e) {

 // Do something

 throw e;

 }

In general, the catch block and the finally block of a try statement are optional ï either

may be absent but not both! Also, you can have multiple catch blocks, each responsible

for catching and handling a different type of exception. Weôll discuss this further after

weôve introduced class inheritance in the next chapter.

56 JavaGram Agile Development

3 Object-oriented Programming

Classes were introduced in the previous chapter. This chapter builds on that foundation

and describes how classes can be extended to take advantage of object oriented (OO)

features such as inheritance and polymorphism. Simple programming examples are used

to illustrate the application of these concepts.

3.1 Inheritance

Think of a program that deals with geometric shapes ï lines, rectangles, ovals, polygons,

etc. Each of these can be represented by a class. Many methods would be common to all

these classes, such as: draw() , move() , resize() , fill() . Simplistically, we can implement

each shape using a separate class, but later on when we start using these classes, a

recurring annoyance emerges: in order to do something to a shape, we need to know what

type of shape it is. For example, suppose that we have a Canvas class that can

accommodate multiple shapes, having a draw() method that draws the whole canvas by

drawing each shape:

class Canvas {

 vector <object > shapes @= vector ();

 //.. .

 public void draw () {

 for (object shape in shapes) {

 switch (typeof (shape)) {

 case $Line: shape@ Line .draw(); break ;

 case $Rectangle: shape@ Rectangle .draw(); break ;

 case $Oval: shape@ Oval .draw(); break ;

 case $Polygon: shape@ Polygon .d raw(); break ;

 }

 }

 }

}

There are three problems with this design:

¶ The coding of Canvas methods, such as draw() , becomes quite tedious, requiring a

switch to handle each shape type separately.

¶ Adding a new type of shape (e.g., PolyLine) will require changes to many of the

Canvas methods to cater for it. This could involve significant effort and is potentially

error prone.

¶ There are likely to be fields and methods with identical definition for each shape

(e.g., color and getColor()). These would need to be redefined for every shape class,

resulting in unnecessary duplication of code.

Object-oriented Programming 57

Inheritance provides an elegant solution to this problem, allowing us to write the common

parts once and override those methods that are specific to each class.

When designing classes, itôs useful to visualize the class hierarchy using a graphical

notation such as UML. The following UML diagram shows how we can organize our

shape classes to take advantage of inheritance.

Shape

-color: string

+draw(): void

+move(x:int, y:int): void

+resize(x:int, y:int): void

+fill(color:string): void

+getColor(): string

+setColor(color:string): void

Canvas

+draw (): void

shapes

Line

+draw (): void

+move(x:int, y:int): void

+resize(x:int, y:int): void

Rectangle

+draw (): void

+move(x:int, y:int): void

+resize(x:int, y:int): void

+fill(color:string): void

Oval

+draw (): void

+move(x:int, y:int): void

+resize(x:int, y:int): void

+fill(color:string): void

Polygon

+draw (): void

+move(x:int, y:int): void

+resize(x:int, y:int): void

+fill(color:string): void

In UML, each class is represented by a box divided into three parts ï the top part bears

the class name, the middle part lists the class fields, and the bottom part lists its methods.

Shape is an abstract class (hence appearing in italics). Abstract classes cannot be

instantiated, but rather serve as design elements that other classes can extend. The

directed line from the Canvas class to the Shape class represents aggregation, implying

that Canvas can refer to multiple shapes. The directed line from each of the bottom classes

to the Shape class represents inheritance, implying that these classes inherit members

(fields and methods) from the Shape class. Because the bottom classes can be instantiated,

theyôre said to be concrete.

In this diagram, Shape is said to be a base class (also called a super class). Each of Line ,

Rectangle , Oval , and Polygon is said to be a derived class (also called a subclass).

The symbol appearing before each member denotes its visibility:

¶ - stands for private

¶ # stands for protected

¶ + stands for public

The methods draw() , move() , and resize() are defined as abstract in Shape (appearing in

italics). This means that their definition is deferred to a derived class. Each of the four

derived classes provides its own implementation of these methods. The remaining

58 JavaGram Agile Development

methods and fields of Shape are inherited óas isô by the derived classes, except for fill() .

The latter is overridden by the 2D shapes and ignored by Line .

Given this design, Canvas can be defined much more elegantly.

class Canvas {

 vector <Shape> shapes @= vector ();

 //...

 public void draw () {

 for (Shape shape in shapes)

 shape .draw();

 }

}

Because Shape is the base class for all shapes, we can draw the canvas by simply iterating

through its shapes and invoking each shapeôs draw() method without needing to know

what type of shape it is. JavaGram resolves the call shape.draw() at runtime and invokes

the draw() method of the relevant concrete class. Therefore, draw() is said to be a

polymorphic method.

3.2 Shopping Cart Example

This section describes a fairly complete example of how inheritance can be used to

develop an OO solution to a problem. The problem is one of developing a shopping cart

for an online store.

First we need a representation of a customer visiting the store. For this, weôll use a

minimal class, as this is not the focus of our discussion.

class Customer {

 protected getable string name;

 protected getable string address;

 //...

 public Customer (string name, string address) {

 this .name = name;

 this .address = address;

 }

}

The getable qualifier deserves some explanation. A common coding pattern is to define a

get method (e.g., getName()) for private and protected fields of a class that need to be

accessed by the class users. Rather than defining such a method explicitly, you can use

the getable qualifier to instruct JavaGram to define it implicitly. JavaGram generates the

following hidden method for the name field.

public string getName () {

 return name;

}

Object-oriented Programming 59

There is also a setable qualifier which generates a hidden method for setting the value of

a field (setable also implies getable , so you donôt need to specify both). If used on the

name field, JavaGram will also generate the following hidden method.

public void setName (string name) {

 this .name = name;

}

The online store offers a range of products for sale. Weôll use an abstract class to

represents all products.

abstract class Product {

 protected getable string id; // Unique product ID

 protected getable real price; // Unit price is dollars

 protected get able real weight; // Unit weight in kilograms

 abstract public string format ();

 public void ship (int quantity) {

 Catalog . singleton .ship(id, quantity);

 }

}

The abstract qualifier appearing before the class definition marks Product as abstract,

implying that this class canôt be instantiated directly. Each product has a unique numeric

ID, a price (expressed in dollars), and a weight (expressed in kilograms). The format()

method is intended to produce a string representation of the product. This method is

defined as abstract and therefore has no implementation ï the implementation is

deferred to subclasses. The ship() method causes a given quantity of the product to be

shipped. Weôll discuss the implementation of this method later on.

Letôs now consider some real products. The first one is called Gadget and represents a

manufactured piece of equipment (such as an iPod).

class Gadget extends Product {

 protected getable string make;

 protected getable string model;

 protected get able int year; // Year of manufacture

 public string format () {

 return $"{id} {make} {model} {year} @{sys . format (price, ShopCart . MONEY)}";

 }

}

Note how Gadget is derived from Product , using the keyword extends . This causes Gadget

to inherit everything defined in Product . The fields defined in Gadget are in addition to the

fields defined in Product . Any methods defined in the subclass are either in addition to

the base class, or override the ones in the base class. In this case, we have one such

60 JavaGram Agile Development

method, format() , which provides an implementation of the same abstract method in

Product . This method uses a delayed string to format its return value. The last expression

in this string uses sys.format() to format the price of a gadget (ShopCart.MONEY is a

defined constant in another class). This call effectively resolves to this:

 sys . format (price, "$0,000.00")

The format string (the second argument) causes price to be formatted as a dollar figure to

two decimal places, with every three whole figures comma separated. For example,

12000.45267 will be formatted as $12,000.45 .

The next product type is Book .

class Book extends Product {

 protected getable string author;

 protected getable string title;

 protected getable string publisher;

 protected getable int year; // Year of publication

 protected getable string isbn; // ISBN

 public string format () {

 return $"{id} {author}, {title}, {publisher} {year}, ISBN {isbn} @{sys . fo

rmat (price, ShopCart . MONEY)}";

 }

}

Like Gadget , Book is a subclass of Product and has a similar definition.

The third and final product type to discuss here is an electronic book. Because EBook is

really a book, weôve defined it by subclassing Book . Furthermore, to capture its additional

behavior (i.e., the fact that itôs electronic and therefore downloadable), weôve also

subclassed it from another class: Downloadable . This is called multiple inheritance.

class EBook extends Book , Downloadable {

 public real getWeight () {

 return 0.0;

 }

 public string format () {

 return super @Book .format() + super @Downloadable .format();

 }

 public void ship (Customer cust, int quantity) {

 create(id, $"{cust.getName()}: {quantity} copies");

 }

}

EBook overrides three methods from its base classes. getWeight() is overridden to return

zero, because an ebook is not a physical entity. Note how format() invokes the same

method from both base classes. The keyword super refers to a base class. However,

Object-oriented Programming 61

because there are two base classes, weôve also used the cast operator to indicate which

particular base class weôre referring to (this would be unnecessary if there were just one

base class). Finally, weôve also overridden the ship() method so that the downloadable

file is generated by this method. The create() method is defined in the Downloadable

class.

mutual class Downloadable {

 protected string url; // URL to download from

 public void create (string prodId, string wate rmark) {

 url = Catalog . singleton .createDownloadableFile(prodId, watermark);

 }

 public string format () {

 return url == null ? "" : $" ({url})";

 }

}

The mutual qualifier means that this class will be treated just once, no matter how many

times it appears in a derivation hierarchy (more on this in the next section). The create()

method refers to another class, Catalog , defined below.

Having defined all our product types, we can now define the class that represents the

shopping cart.

class ShopCart {

 public static final string MONEY = "$0,000.00";

 protected static int lastCartId = 0; // Last allocated cart ID

 protected int cartId; // Unique cart ID

 protected map<string , int > items @= map(); // Product ID => quantity

 protected Customer customer; // The customer who owns the cart

 protected real totalWeight; // Total weight of cart items

 protected real totalCost; // Total cost of items

 public ShopCart () {

 cartId = ++lastCartId ;

 }

 public void addItem (string id, int quantity) {

 items[id] = quantity;

 }

 public void checkOut (Customer cust) {

 customer = cust;

 totalWeight = 0.0;

 totalCost = 0.0;

 for (string id in items) {

 Product prod = Catalog . singleton .getProduct(id);

 totalWeight += prod.getWeight();

 totalCost += prod.getPrice() * items[id];

 prod.ship(items[id]);

 }

62 JavaGram Agile Development

 totalCost += shippingCost (totalWeight);

 }

 public static real shippingCost (real weight) {

 return weight * 5.5;

 }

 public void displayInvoice () {

 sys . println ("Customer: ", customer.getName());

 sys . println ("Address: ", customer.getAddress());

 sys . println ("Order:");

 int idx = 0;

 for (string id in items) {

 Product prod = Catalog . singleton .getProduct(id);

 sys . print (++idx, ". ", prod.format(), " x ", items[id], ": ");

 sys . println (sys . format (prod.getPrice() * items[id], MONEY));

 }

 sys . println ("Shipping: ", sys . format (shippingCost (totalWeight), MONEY));

 sys . println ("Total: ", sys . format (totalCost, MONEY));

 }

}

Each ShopCart instance is allocated a unique ID (cartId) thatôs generated by incrementing

lastCartId . The items in the cart are captured by the items map, which maps selected

product IDs to their purchase quantity. The customer , totalWeight , and totalCost fields

are set during the check out process.

Items are added to the cart using the addItem() method. The checkout() method iterates

through the cart items, works out total weight and cost, and ships each item. The shipping

cost is calculated by the shippingCost() method, whose value is added to the total cost.

displayInvoice() outputs the customer details, selected items and their quantities and

cost, shipping cost, and total cost. Note the use of the polymorphic method format() in

this method. The design ensures that as future product types are added, there will be no

impact on the ShopCart class.

The Product and ShopCart classes refer to another class called Catalog . The latter provides

an up-to-date catalog of all products available in the online store.

singleton cl ass Catalog {

 protected static int lastDownloadId = 0;

 protected string file;

 protected map<string , Product > products @= map(); // Product ID => Product details

 protected map<string , int > stock @= map(); // Product ID => quantity in st ock

 public Catalog (string file) {

 this .file = file;

 stream s = null ;

 try {

 s = sys . open (file, "r");

 vague data = sys . eval (sys . read (s));

Object-oriented Programming 63

 if (!(data instanceof vector <list >))

 throw new Exception(file + " has invalid format");

 for (list pair in data@vector <list >) {

 Product prod @= pair[0];

 int quantity @= pair[1];

 products[prod.getId()] = prod;

 stock[pro d.getId()] = quantity;

 }

 }

 finally {

 if (s != null)

 sys . close (s);

 }

 }

 public void save () {

 vector <list > data @= vector ();

 for (string id in products)

 sys . append (data, list (products[id], stock[id]));

 stream s = null ;

 try {

 s = sys . open (file, "w");

 sys . ppln (s, data);

 }

 finally {

 if (s != null)

 sys . close (s);

 }

 }

 public void displayCatalog () {

 sys . println (sys . length (products), " products in catalog:");

 for (vague id in sys . sort (sys . mapKeys(products)))

 sys . println (products[id].format(), " (", stock[id], " available)");

 sys . printl n();

 }

 public Product getProduct (string id) {

 return products[id];

 }

 public int inStock (string prodId) {

 int quantity = stock[prodId];

 return quantity == null ? 0 : quantity;

 }

 public void ship (string prod Id, int quantity) {

 if (inStock(prodId) < quantity)

 throw new Exception(prodId + " short of stock");

 stock[prodId] - = quantity;

 }

 public string createDownloadableFile (string prodId, string watermark) {

 string ur l = $"https://www.acme.com/download/{prodId}_{++ lastDownloadId }.pdf";

 // TODO: create a PDF file for the product denoted by prodId, where

 // each page is watermarked with the string denoted by watermark.

 return url;

64 JavaGram Agile Development

 }

}

This class is defined as singleton ï JavaGram will ensure that no more than one instance

of this class will exist in a running process. Singleton is a commonly used design pattern,

so JavaGram provides direct support for it. You can refer to the one-and-only instance of

a singleton class using the Class.singleton notation (e.g., Catalog.singleton). If no

instance exists yet, JavaGram will create one for you. Otherwise, it will just return the

existing instance. Most singleton classes either donôt have a constructor or have a default

constructor (i.e., one with no parameters). This enables JavaGram to create an instance

implicitly. Where a singleton classôs constructor requires parameters, the programmer

must create the instance explicitly. Weôll show later on how to do this for the Catalog

class.

In a real application, Catalog and ShopCart would store their data in a database. For

simplicity however, weôve chosen to store the catalog data in a file. The path for this file

is passed to the constructor. The assumed format for the file is that it contains a vector of

lists, where each list consists of a product and its quantity in stock. The constructor reads

the data from this file, checks that itôs a vector and then iterates through the vector to

populate the product s and stock maps. Note the use of sys.read() for reading the file

data. Unlike sys.readln() which reads data textually, line by line, sys.read() reads valid

JavaGram expressions. We pass this to sys.eval() to also perform any necessary

evaluations, though this is not really necessary in this case, as the data is expected to

consist of literals only.

The save() method writes the data back to the file, ensuring that any changes (new

products added, changed quantities) are permanently saved. The ship() method simply

reduces the stock quantity for a product as a result of a purchase. The

createDownloadableFile() method is intended to generate a PDF file for a given digital

product, where each page bears a watermark. It returns the URL of the generated file.

A sample catalog file is shown below to illustrate the intended format.

Catalog.jag
[$([@ Gadget id=>"GM001", price=>249.0, weight=>0.14, make=>"Apple", model=>"

iPod classic 120GB", year=>2009], 10)

,$([@ Gadget id=>"GM002", price=>399.0, weight=>0.115, make=>"Apple", model=>

"iPod touch 32GB", year=>2009], 10)

,$([@ Gadget id=>"GM003", price=>149.0, weight=>0.0368, make=>"Apple", model=

>"iPod nano 8GB", year=>2009], 5)

,$([@ Gadget id=>"GM004", price=>199.0, weight=>0.0368, make=>"Apple", model=

>"iPod nano 16GB", year=>2009], 12)

,$([@ Gadget id=>"GM005", price=>79.0, weight=>0.0107, make=>"Apple", model=>

"iPod shuffle 4GB", year=>2009], 30)

,$([@ Book id=>"PB001", price=>35.0, weight=>0.45, author=>"Peter Black", tit

le=>"Famous Gardens", publisher=>"Lighthouse", year=>2002, isbn=>"0 - 212-

17625 - 9"], 18)

Object-oriented Programming 65

,$([@ Book id=>"PB002", price=>40.0, weight=>1.04, author=>"Mary Adams", titl

e=>"Art of Sewing", publisher=>"Acme House", year=>2006, isbn=>"0 - 143- 12231 -

2"], 15)

,$([@ EBook id=>"EB001", price=>12.0, weight=>0.0, autho r=>"Jane Cornwall", t

itle=>"Child Psychology", publisher=>"Canyon", year=>2008, isbn=>"0 - 254-

19826 - 6"], 10)

]

The final class to describe in this section is a simple test driver for the earlier classes.

class OnlineStore {

 static {

 new Catal og(sys . pathConc (sys . root , "doc/code/chap3/Catalog.jag"));

 }

 public static void main () {

 Catalog . singleton .displayCatalog();

 ShopCart cart = new ShopCart();

 cart.addItem("GM003", 1);

 cart.addItem("PB001", 2);

 cart.addItem("EB001", 1);

 Customer cust = new Customer("John Smith", "5 Victory Dr, Blacktown, Wind

sor 768872 - 24");

 cart.checkOut(cust);

 cart.displayInvoice();

 }

}

The static block defined in this class deserves some explanation. Sometimes there are

initializations that you want to perform before any class instance is created. A static block

provides a way of doing this. Code appearing in a static block is executed (only once)

when the class is loaded. You can have multiple static blocks in a class. These are

executed in the order in which they appear.

As states earlier, because Catalog is a singleton class whose constructor takes a

parameter, its instance must be created explicitly. The purpose of this static block is to do

just that. Note that we donôt need to assign this instance to any variable, because we can

subsequently refer to it as Catalog. singleton .

The main() method displays the catalog, creates a shopping cart, adds three items to it

from the catalog, adds a customer, performs a check out, and displays the invoice.

To summarize, the class hierarchy for this program is presented below as a UML

diagram.

66 JavaGram Agile Development

ShopCart

-cartId: int

-items: map<string,int>

-totalWeight: real

-totalCost: real

+addItem(id:string, quanitity:int): void

+checkOut(cust:Customer): void

+shippingCost(): real

+displayInvoice(): void

Product

-id: string

-price: real

-w eight: real

+format(): string

+ship(cust:Customer, quantity:int): void

Book

-author: string

-title: string

-publisher: string

-year: int

-isbn: string

+format(): string

Gadget

-make: string

-model: string

-year: int

+format(): string

Downloadable
«mutual»

-url: string

+create(prodId:string, w atermark:string): void

+format(): string

EBook

+getWeight(): real

+format(): string

+ship(quantity:int): void

Catalog

-stock: map<string,int>

-f ile: string

-stock: map<string,int>

+Catalog(file:string)

+save(): void

+displayCatalog(): void

+getProduct(id:string): Product

+inStock(prodId:string): int

+ship(prodId:string, quantity:int): void

+createDow nloadableFile(prodId:string, w atermark:string): string

products
*

Customer

-name: string

-address: string

OnlineStore

When run, the program produces the following output.

8 products in catalog:

EB001 Jane Cornwall, Child Psycho logy, Canyon 2008, ISBN 0 - 254- 19826 - 6 @$12.00 (0

available)

GM001 Apple iPod classic 120GB 2009 @$249.00 (10 available)

GM002 Apple iPod touch 32GB 2009 @$399.00 (10 available)

GM003 Apple iPod nano 8GB 2009 @$149.00 (5 available)

GM004 Apple iPod nano 16G B 2009 @$199.00 (12 available)

GM005 Apple iPod shuffle 4GB 2009 @$79.00 (30 available)

PB001 Peter Black, Famous Gardens, Lighthouse 2002, ISBN 0 - 212- 17625 - 9 @$35.00

(18 available)

PB002 Mary Adams, Art of Sewing, Acme House 2006, ISBN 0 - 143- 12231 - 2 @$40. 00 (15

available)

Customer: John Smith

Address: 5 Victory Dr, Blacktown, Windsor 768872 - 24

Order:

Object-oriented Programming 67

1. EB001 Jane Cornwall, Child Psychology, Canyon 2008, ISBN 0 - 254 - 19826 - 6 @$12.00

(https://www.acme.com/download/EB001_1.pdf) x 1: $12.00

2. GM003 Apple iPod nano 8GB 2009 @$149.00 x 1: $149.00

3. PB001 Peter Black, Famous Gardens, Lighthouse 2002, ISBN 0 - 212 - 17625 - 9 @$35.00

x 2: $70.00

Shipping: $2.68

Total: $233.68

3.3 Mutual Classes

Recall how the Downloadable class in the previous section was defined as mutual. This is

a necessary and important consideration when using multiple inheritance. There are two

basic rules regarding mutual classes:

¶ Where a derived class has multiple base classes, at most one of them can be non-

mutual.

¶ All the base classes of a mutual class (if any) must also be mutual.

These rules allow JavaGram to layout the fields of a derived class instance in a

predictable manner and, at the same time, avoid duplication of field instances where a

class participates multiple times in a derivation hierarchy. Sounds confusing? Letôs

clarify the point using an example.

NetworkNode
«mutual»

-location

-bandw idth

Transmitter
«mutual»

-carrier

Receiver
«mutual»

-channels

Transceiver

Consider two mutual classes Transmitter and Receiver that extend another mutual class

NetworkNode . A Transceiver is a device capable of transmission and reception, so itôs best

defined as a derivation of Transmitter and Receiver . In OO programming, this kind of

class hierarchy is called the dreaded diamond problem, because it creates a problem for

the programming language in two respects:

¶ How to layout the fields of an instance of Tra nsc ei ver in memory, given that

NetworkNode ôs fileds are effectively inherited twice.

¶ How to resolve a call to a method thatôs defined in both Transmitter and Receiver .

68 JavaGram Agile Development

JavaGram addresses the first issue by ensuring that no matter how many times a super

class is inherited by a subclass, its fields will appear only once in an object of the

subclass. So in the above example, Transceiver will have four fields, not six.

To address the second problem, JavaGram requires that you explicitly cast to the intended

base class when making such calls (as was exemplified in the EBook.format() method of

the previous section).

3.4 Final Qualifier

Sometimes itôs desirable to prevent a class from being extended. Reasons may include:

security concerns, efficiency considerations, or design constraints. To do this, we simply

use the final qualifier when defining the class.

A simple example would be a User class in a security module that controls access to a

system.

final class User {

 //...

 public void login (string username, str ing password) {

 //...

 }

}

The intent here is to prevent someone from subclassing User and overriding the login()

method in order to avoid authentication.

This qualifier can also be used at a method level, so a similar way of enforcing the above

measure would be to define the class as:

class User {

 //...

 public final void login (string username, string password) {

 //...

 }

}

In this case, the class can be extended but the login() method canôt be overridden.

3.5 This and Super

When dealing with classes and inheritance, two keywords can come in handy: this and

super . Weôve already seen instances of their use in earlier examples, so weôll just recap

their role and use here. Because both these refer to an instance of a class, it would be

meaningless to try to use them in static methods.

In the implementation of a non-static method, we can use this to refer to the implicit

class instance on which the method is invoked. We typically do this to avoid ambiguity.

Object-oriented Programming 69

The most common case is when you have a method parameter or local variable that has

the same name as a class field. By using the this.field notation, we avoid this ambiguity

and make our intention clear. Another less common use is to invoke a constructor from

another constructor. For example, in

class Point {

 int x, y;

 public Point () {

 this (0, 0);

 }

 public Point (int x, int y) {

 this .x = x;

 this .y = y;

 }

}

The first constructor uses this to call the second constructor, and the second constructor

uses this to overcome the ambiguity of fields and parameters having the same name.

The super keyword is only meaningful in a derived class, and can be used to refer to a

base class. When there is only one base class, the intention is clear. However, when there

are multiple base classes, explicit casting must be used to overcome ambiguity.

Earlier we saw an example of this in the EBook.format() method:

public string format () {

 return super @Book .format() + super @Downloadable .format();

}

Because EBook has two base classes, both of which have a form at() method, weôve used

explicit casting after super to nominate the desired class to which the call should resolve.

3.6 Method Parameters

Sometimes it makes sense to define more than one óflavorô of the same method in a class.

We saw an example of this in the previous section for the Point class, where two

constructors are provided. This is called method overloading and can be applied to

constructors as well as any other method. Here is another example:

class DataCache {

 map<symbol , vague > cache @= map();

 public void add (symbol key, vague data) {

 cache[key] = data;

 }

 public void clear () {

 sys . clear (cache);

 }

 public void clear (symbol key) {

70 JavaGram Agile Development

 sys . remove (cache, key);

 }

 public void clear (vector <symbol > keys) {

 for (symbol key in keys)

 sys . remove (cache, key);

 }

 //...

}

This class provides three clear() methods ï one that clears the entire cache, another that

clears a specific item from the cache, and a third that clears multiple items from the

cache.

Another way of making a method more versatile is to give it default arguments. For

example, the two constructors for the Point class can be written more elegantly as one:

class Point {

 int x, y;

 public Point (int x = 0, int y = 0) {

 this .x = x;

 this .y = y;

 }

}

Given this definition, the following constructor invocations are all valid:

 Point p1 = new Point (); // x == y == 0

 Point p2 = new Point (10, 20); // x == 10, y == 20

 Point p3 = new Point (10); // x == 10, y == 0

In other words, where a trailing argument is not specified, the default value is used. As a

general rule, all default argument values must be trailing.

Similarly, we can combine the first two DataCache.clear() methods using a default

argument:

public void clear (symbol key = null) {

 if (key == null)

 sys . clear (ca che);

 else

 sys . remove (cache, key);

}

However, this is not recommended as it will not improve the clarity of the code. The

recommended rule of thumb is to use the style that delivers the most clarity.

Object-oriented Programming 71

3.7 Class Variables

An unusual but handy feature of JavaGram is that class names can be used as values, and

therefore assigned to lvalues or passed as arguments to methods. When you do this, the

corresponding lvalue must be of type vague . An actual example of this occurs in the

EventInitiator class of lib/lang/ Event.jag standard library script, a snippet of which

appears below.

mutual class EventInitiator {

 protected map<symbol , vector <EventListener >> eventMap @= map();

 public void addListener (vague eventClassName, EventListener listener) {

 sy mbol eventName = typeof (eventClassName);

 vector <EventListener > listeners = eventMap[eventName];

 if (listeners == null)

 eventMap[eventName] = listeners @= vector ();

 sys . append (listeners, listener);

 }

 //...

}

Here, the first parameter of addListener() is intended to be an event class name. For

example, given a Bin dEvent class, we could write something like this:

 EventInitiator editor;

 EventListener screen;

 //...

 editor .addListener(BindEvent , screen);

Note how addListener() uses the typeof operator to convert the class name to a symbol.

This operator returns the qualified class name as a symbol.

You can also get the qualified name of a class as a symbol using the notation

ClassName.symbol (for example, Point. symbol). But note that typeof and .symbol serve

completely different purposes ï the former operates on an expression, whereas the latter

is applied directly to a class name.

Finally, given an expression that evaluates to a class instance, you can use the notation

expr.class to get its class name. For example, if pt is of type Point then pt.class gives

Point as a vague value.

72 JavaGram Agile Development

4 GUI Programming

Modern applications are generally expected to have a Graphical User Interface (GUI)

designed with intuitiveness and ease of use in mind. GUIs, however, tend to be code

intensive due to complexities such as event handling, data binding, the need for flexible

navigation paths, and so on. One of the design goals of JavaGram is to substantially

reduce this complexity by offering a declarative style of programming as opposed to the

procedural style of established GUI frameworks and libraries such as Javaôs Swing.

JavaGramôs promise is that youôll write a lot less code, your code will be far more

readable, and considerably easier to test, making the language particularly well-suited to

rapid prototyping and agile development.

4.1 Demo Application

To illustrate the many GUI elements to be covered in this chapter, weôll use a demo

application that weôll gradually build up and add elements to. There is no specific

business functionality behind this application other than showing how to code different

types of elements and manipulate their properties. The first cut of this application

(DemoApp.jag) is shown below.

<jag domain="doc/code/chap4">

<load >

 "lib/gui/GuiApp"

</load>

singleton class DemoApp extends GuiApp {

 <App app lookAndFeel=$windows>

 <Frame frame title="Demo App" width=550 height=400 event=frameHandler />

 </App>

 public DemoApp () {

 super (frame);

 }

 protected void frameHandler (native comp, symbol event) {

 if (event == $close)

 exit();

 }

 public static void main () {

 DemoApp. singleton .run();

 }

}

</jag>

The easiest way to define a GUI application is to subclass the lib/gui/GuiApp library

class, which is what weôve done here. Singleton classes come very handy when writing

GUI applications because many of the visual components tend to have singleton

behavior. Weôve defined DemoApp as a singleton for this reason.

GUI Programming 73

In JavaGram, GUI elements are defined using a markup notation. Such markups are

defined inside classes and behave like class fields. The <App> element represents a GUI

application. The identifier app names the element so that subsequently we can refer to the

element using this identifier. For elements that appear at the same level as class fields and

methods (called GUI class members) this is mandatory. For nested elements (such as

<Frame> in this example) this is optional, so we name these only when we actually need to

refer to them elsewhere in the code.

GUI class members can have any of the qualifiers allowed for fields, except for getable

and setable . For example, you can specify a GUI member to be protected static .

Each element type accepts a certain set of properties. These properties are typed and can

be set either at the time of defining the element or later on within the code of a method.

For <App>, for instance, weôve set the lookAndFeel property to $windows . This causes the

application to assume a Microsoft Windows look and feel.

Many of the GUI elements are containers, allowing you to define your GUI as a

hierarchy. For example, weôve defined <Frame> inside <App>. The former defines a main

frame for the application.

Some elements support event handlers. An event handler is a method with a

predetermined signature that gets called by JavaGram when the element receives certain

events. Event handlers are always defined using the event property, which is set to the

name of the method that handles the events (e.g., frameHandler () in the above example).

An event handler always takes two parameters: the comp parameter is set to the

component that has raised the event (in this case the frame itself), and the event

parameter is set to a symbol that represents the event (e.g., $close). The reason for having

the first parameter is that you can have multiple elements sharing the same event handler,

so you can examine comp to determine for which element the event has been raised. Our

eventHandler() here is quite simple ï when the event is $close (which is raised when the

user clicks in the close box of the frame), it exists the application by calling the exit()

method of the base class.

74 JavaGram Agile Development

The main() method boots the application by calling the run() method of the base class,

causing the above to be displayed.

As we introduce other elements in the course of this chapter, feel free to look them up in

Chapter 11 to find out more about their properties. Element types form a hierarchy,

whereby one element type inherits the properties of another. As with classes, some

element types are abstract, so you canôt actually use them in your code ï they serve as

abstractions for capturing common properties and behaviors. In general, however,

element types are not classes, so you should be mindful not to treat them as such.

4.2 Panels, Layouts, and Fields

Letôs extend our demo application by adding a tabbed pane to the main frame. For now,

weôll add just one tab page that represents a person.

 <App app lookAndFeel=$windows>

 <Frame frame title="Demo App" width=550 height=400 event=frameHandler>

 <Pane.tabbed tab s lay=$center>

 <Tab title="Person" image={ sys . use ("lib/gifs/Person.gif")}>

 <Indirect ref={ PersonPanel . singleton .panel} />

 </Tab>

 </Pane>

 </Frame>

 </App>

The <Pane.tabbed> element represents a tabbed pane. The dot in this elementôs tag name

is a JavaGram convention that implies that there are a number of different pane types.

Weôll see another one called <Pane.scroll> shortly. Note how weôve used </Pane> as the

closing tag. We could have equally used </Pane.tabbed> ; the latter being the preferred

style for its superior readability. Like <Frame> , <Pane.tabbed> is a container. However, the

latter can only contain <Tab> elements.

GUI Programming 75

For our tab, weôve specified both a title and an iconic image, both of which are optional.

The image property must be set to the absolute path of a GIF file. However, rather than

specifying the image path as a string, weôve used sys.use() and passed the relative image

path to it (this path is relative to sys.ro ot). This is the recommended coding style for

specifying image paths, because it ensures that the program will work correctly in both

standalone and client-server mode (introduced later in this book). sys.use() returns the

absolute path of the image file and, if necessary, downloads the image from a server.

Note how the call to sys.use() is enclosed in curly braces. In general, when you specify a

value for a property, itôs expected to be a literal. A non-literal value (e.g., an arbitrary

expression) must be enclosed in braces. This tells JavaGram that whatever is inside the

braces must be evaluated and the resulting value used instead.

Rather than coding the contents of the tab directly here, weôve used an <Indirect>

element. This element is very useful when you want to spread the code for a GUI across

different classes. The ref property of this element must be set to the GUI component that

it represents which, in this case, is a panel specified in the singleton class PersonPanel .

<jag domain="doc/code/cha p4">

singleton class PersonPanel {

 static vector <string > STATES = [

 "", "ACT", "NT", "NSW", "QLD", "SA", "TAS", "VIC", "WA"

];

 <Panel panel type= Person >

 <Layout.border/>

 <Panel lay=$north>

 <Layout.gridBag/>

 <Lay row=0 col=0 weight=0.0 margin=2 align=$east>

 <Label title="First Name"/>

 </Lay>

 <Lay row=0 col=1 fill=$horizontal margin=2>

 <Field.text key=$firstName />

 </Lay>

 <Lay row= 0 col=2 weight=0.0 margin=2 align=$east>

 <Label title="Last Name"/>

 </Lay>

 <Lay row=0 col=3 fill=$horizontal margin=2>

 <Field.text key=$lastName />

 </Lay>

 <Lay row=1 col=0 weigh t=0.0 margin=2 align=$east>

 <Label title="Sex" />

 </Lay>

 <Lay row=1 col=1 fill=$horizontal margin=2>

 <Combo key=$sex data=["", "Male", "Female"] />

 </Lay>

 <Lay row=1 col=2 weight =0.0 margin=2 align=$east>

 <Label title="DOB" />

 </Lay>

 <Lay row=1 col=3 fill=$horizontal margin=2>

76 JavaGram Agile Development

 <Field.date key=$dob format="dd MMM yyyy" />

 </Lay>

 <Lay row=2 col=0 weight=0. 0 margin=2 align=$east>

 <Label title="Occupation" />

 </Lay>

 <Lay row=2 col=1 fill=$horizontal margin=2>

 <Combo key=$occupation model=occupComboModel />

 </Lay>

 <Lay row=2 col=3 fi ll=$horizontal margin=2>

 <Option.tick title="Smoker" key=$smoker />

 </Lay>

 </Panel>

 <Pane.tabbed lay=$center>

 <Tab title="Address">

 <Panel key=$address type= Address >

 <Layout.gridBag/>

 <Lay row=0 col=0 weight=0.0 margin=2 align=$east>

 <Label title="Street" />

 </Lay>

 <Lay row=0 col=1 colSpan=3 fill=$horizontal margin=2>

 <Field.text key=$street />

 </Lay>

 <Lay row=0 col=4 weight=0.0 margin=2 align=$east>

 <Label title="City" />

 </Lay>

 <Lay row=0 col=5 fill=$horizontal margin=2>

 <Field.text key=$city />

 </Lay>

 <Lay row=1 col=0 weight=0.0 margin=2 align=$east>

 <Label title="State" />

 </Lay>

 <Lay ro w=1 col=1 fill=$horizontal margin=2>

 <Combo key=$state data={ STATES} />

 </Lay>

 <Lay row=1 col=2 weight=0.0 margin=2 align=$east>

 <Label title="Postcode" />

 </Lay>

 <Lay row=1 col=3 fill=$horizontal margin=2>

 <Field.text key=$postcode />

 </Lay>

 <Lay row=1 col=4 weight=0.0 margin=2 align=$east>

 <Label title="Country" />

 </Lay>

 <Lay row=1 col=5 fill=$horizontal margin=2>

 <Field.text key=$country />

 </Lay>

 </Panel>

 </Tab>

 <Tab title=" Comment">

 <Pane.scroll >

 <Area.text key=$comment />

GUI Programming 77

 </Pane>

 </Tab>

 </Pane.tabbed>

 <Panel lay=$south>

 <Button title="Bind to Map" image={ sys . use ("lib/gifs/Chain.gif")}

 action={bindToMap()} />

 <Button title="Bind to Obj" image={ sys . use ("lib/gifs/Chain.gif")}

 action={bindToObj()} />

 <Button title="Clear" image={ sys . use ("lib/gifs/Clear.gif")}

 action={clear()} />

 <Button title ="Map Binding" action={mapBinding()} />

 <Button title="Obj Binding" action={objBinding()} />

 </Panel>

 </Panel>

 public static final vector <string > OCCUPATIONS @= sys . sort ([

 "", "Engineer", "Scientist", "Accountant", "Teache r", "Manager",

 "Administrator", "Health Worker", "Pilot", "Driver", "Mechanic",

 "Public Servant", "Judge"

]);

 // Just to illustrates the model style for combos.

 protected vague occupComboModel (native combo, symbol cmd, int idx) {

 switch (cmd) {

 case $count: return sys . length (OCCUPATIONS);

 case $get: return OCCUPATIONS[idx];

 }

 return "";

 }

 protected void bindToMap () {

 map record = map(

 $firstName=>"John ", $lastName=>"Smith", $sex=>"Male", $dob=>[#1982 - 12- 22],

 $occupation=>"Mechanic", $smoker=> true , $comment=>"Sample comment",

 $address=>[

 $street=>"9 Grange St", $city=>"Balwyn", $state=>"VIC", $postcode=>"3103",

 $country=>"Australia"

]

);

 gui . bind (panel, record);

 }

 protected void bindToObj () {

 Person record = [@Person

 firstName=>"Linda", lastName=>"Forbes", sex=>"Female", dob=>[#1987 - 02- 15],

 occupation=>"Accountant", smoker=> false , comment=>"Another comment",

 address=>[@ Address

 street=>"2 Smith St", city=>"Kew", state=>"VIC", postcode=>"3101",

 country=>"Australia"

]

];

 gui . bind (panel, record);

 }

 protected void clear () {

 gui . bind (panel, map());

78 JavaGram Agile Development

 }

 protected void mapBinding () {

 map record = map();

 gui . save (panel, record);

 sys . println (record);

 }

 protected void objBinding () {

 Person record = new Person ();

 gui . save (panel, record);

 sys . println (record);

 }

}

</jag>

In this class, a person is represented by a <Panel> element. A <Panel> is by far the most

commonly-used container; it organizes its contents according to a specific layout. Where

a layout is specified, it should appear first inside the panel. If not specified, the panel

layout defaults to <Layout.flow> .

The top-level panel in the PersonPanel class is specified to have a border layout. This

layout allows you to organize the panelôs children according to the following diagram.

For each child, you can specify a lay property, set to one of the above values (defaults to

$center if unspecified). The unused parts of a border layout shrink to zero. Also, any

unclaimed space is usually taken up by $center .

In our example, we have a border-layout panel, where $north is used to display a personôs

details, $center is used to show address details and comment, and $south is used to

display a set of buttons, as illustrated below.

GUI Programming 79

The northern panel itself is specified to have a grid -bag layout. This layout is useful for

organizing a set of fields such that they are neatly aligned. Each child is laid out using a

<Lay> element, the properties of which determine where itôs placed, how itôs aligned, etc.

For specifying the fields, weôve used the following elements:

¶ <Label> for the text appearing to the left of each field.

¶ <Field.text> for textual fields, such as first name.

¶ <Field.date> for date fields, such as date of birth. Note the use of the format property,

which specifies the preferred format for data entry as well as display.

¶ <Combo> for drop-down combo boxes, such as sex.

¶ <Option.tick> for check boxes, such as smoker.

For elements, such as combo boxes, that can display a multitude of values, there are two

ways of specifying these values. The sex combo demonstrates the use of the direct data

approach, where the data property is set to the list of values to be displayed in the

comboôs drop down box. The occupation combo demonstrates the use of the data model

approach, where the model property is set to the name of a method in the same class that

provides this data. A comboôs model must have the following signature.

vague comboModel (native combo, symbol cmd, int idx)

JavaGram calls this method automatically, passing it appropriate arguments, whenever it

needs to obtain information on how to display the combo.

In the center of the panel, weôve added a tabbed pane of two tabs ï one for address details

and one for arbitrary comments. The former is organized using a grid-bag layout similar

to the person details panel. The latter uses two new elements:

¶ <Area.text> for text boxes that can accommodate multiple lines of text.

80 JavaGram Agile Development

¶ <Pane.scroll> to provide scrolling functionality for anything that can grow bigger

than the physical space it occupies.

The buttons in the south panel are for testing purposes. Each is specified as a <Button>

element, whose action property is evaluated when the button is pressed.

4.2.1 Data Binding

When a user is interacting with a GUI, two common patterns occur:

¶ Data entry, whereby the user keys in some data into the fields of a screen. The

program then needs to transfer this data to some internal data structure, such as an

object, before it can do something useful with it.

¶ Lookup, whereby the user retrieves information from, say, a database, and wants to

view it in a screen. Again, the data needs to be transferred from the programôs internal

data structure onto the screen fields.

In most GUI frameworks, these two tasks are the direct responsibility of the programmer

and may require much mundane coding. Although you can follow this same approach in

JavaGram, there is a much easier way.

You might have noticed that in the PersonPanel class, weôve specified a key property for

each field that can hold a value. This property specifies the relationship between a GUI

element and its corresponding programmatic data. With this in place, you can bind an

entire screen to a corresponding data structure, leaving the field-level detail to JavaGram

to work out.

In JavaGram, the default data structure for binding is a map. However, you can also use

classes. If you refer back to the PersonPanel class, youôll notice that both the person panel

and the address panel have their type property, respectively, set to class names Person and

Address . The minimal definition for these two classes is as follows.

class Person {

 string firstName;

 string lastName;

 string sex;

 date dob;

 string occupation;

 boolean smoker;

 string comment;

 Address address;

}

class Address {

 string street;

 string city;

 string state;

 string postcode;

 string country;

GUI Programming 81

}

The key point to note is that the class field names match the key property of the

corresponding panel fields (albeit the latter are specified as symbols). In particular, note

how the address field of the Person class matches the key=$address property of the

address panel. In other words, class aggregation can be mirrored by panel nesting.

Now refer to the bindToObj() method which creates a Person object, whose address field

refers to an Address object. The gui.bind() call binds the whole person panel to the

person object, which then recursively binds the children (gui is a pseudo class ï like sys ï

that provides methods specific to GUI functionality). Pressing the Bind to Obj button

causes bindToObj() to be invoked and the binding to take effect, the result of which is

displayed below.

The objBinding() method does the opposite. It creates an empty Person object and

invokes gui.save() on the panel and this object, causing the panel data to be saved into

the object. Pressing the Obj Binding button causes objBinding() to be invoked, which

produces the following output.

[@Person address=>[@ Address city=>"Kew", country=>"Australia", postcode=>"3101",

state=>"VIC", street=>"2 Smith St"], comment=>"Another comment", dob=>[#1987 - 02-

15], firstName=>"Linda", lastName=>"Forbes", occupation=>"Accountant ",

sex=>"Female", smoker=>false]

Itôs important to note that the inner Address object here is actually created by JavaGram

(as a result of the binding rules) and not the programmer.

The Bind to Map and Map Binding buttons, respectively, invoke bindToMap() and

mapBinding() . These have the same effect as the corresponding object buttons/methods

but use maps for data binding instead.

82 JavaGram Agile Development

Finally, the Clear button, clears all the panel data by binding the panel to an empty map.

An obvious question arises from this discussion: given the choice of objects and maps for

data binding, which one is recommended? All things considered, the answer depends on

the situation at hand. For example, suppose you have a search panel where you allow the

user to specify search criteria using a collection of fields. This is best served by an ad-hoc

data structure, so map binding would be ideal. On the other hand, if the search returns a

collection of objects (such as products) each of which is already an object, itôs best to use

these objects for the data binding of the screen that displays a product.

4.3 Trees

Trees are useful for visualizing hierarchical information, where there is parent-child

relationship. The root of a tree consists of zero or more nodes, where each node can

contain child nodes, and so on. A tree is defined using the <Tree> element and its nodes

are defined using the <Node> element.

As an example, consider a class that provides a tree view of a task hierarchy, such as how

to build a shed.

<jag domain="doc/code/chap 4">

singleton class TaskTree {

 <Icon icon image={ sys . use ("lib/gifs/Hammer.gif")} />

 <Tree tree event=treeHandler>

 <Node title="Building a shed" image={icon}>

 <Node title="Build foundation" image={icon}>

 <Node titl e="Mark base and dig" />

 <Node title="Secure wire mesh" />

 <Node title="Pour concrete" />

 </Node>

 <Node title="Build frame" image={icon} content="Shed.gif">

 <Node title="Measure and cut t imber" />

 <Node title="Erect and nail walls" />

 <Node title="Secure frame to foundation" />

 </Node>

 <Node title="Install roof" image={icon} />

 <Node title="Install cladding" image={icon} />

 <Node title="Install door" image={icon} />

 </Node>

 </Tree>

 <Pane.split split divider=150 weight=0.3 >

 <Pane.scroll lay=$west>

 <Indirect ref={tree} />

 </Pane.scroll>

 <Panel blank lay=$east>

 <Label title="No Detail" />

 </Panel>

 </Pane.split>

 <Pane.scroll picView>

GUI Programming 83

 <Label picture />

 </Pane.scroll>

 protected void treeHandler (native comp, symbol event) {

 switch (event) {

 case $select:

 i nt oldDiv @= split.divider;

 vague node = tree.select;

 vague content = node@<Node>?.content;

 if (content instanceof string) {

 string path = sys . pathConc ("doc/code/chap4", content@ string);

 picture.image = sys . use (path);

 split.east = picView;

 } else

 split.east = blank;

 split.divider = oldDiv;

 break ;

 case $drill:

 case $expand:

 case $collapse:

 break ;

 }

 }

}

</jag>

Note how weôve defined an <Icon> and reused it for specifying the image property of a

number of <Node> elements. We could have equally defined the node image properties

directly, but this approach is more convenient and efficient, because the image is created

only once and subsequently reused.

Weôve also used the <Pane.split> element to create a split pane, whose west side

contains the tree and whose east side is reserved for displaying the ócontentô of each tree

node. The default content is a blank panel, which simply contains the label ñNo Detailò.

The alternative content is the picView scroll pane, which weôll later use in the event

handler to display an image.

The interesting stuff happens in the tree event handling method treeHandler() . A tree can

generate four kinds of event:

¶ $select is raised when a tree node is selected or deselected.

¶ $drill is raised when a tree node is double-clicked.

¶ $expand is raised when a parent node is expanded.

¶ $collapse is raised when a parent node is collapsed.

In this example, weôre only interested in the $select event. Note how one of the tree

nodes (Build frame) has a content property. This property can be set to any arbitrary data

that we want to associate with a node. For example, in a CRM application, a tree node

84 JavaGram Agile Development

representing a customer could have its content set to the customer object. Weôve

programmed the handling of the $select event such that the currently selected nodeôs

content is displayed in the split paneôs east side.

In this example, weôre using an image file name as node content, with the intention that

when the node is selected, weôll display this image in the east side. To do this, the event

handler gets the currently selected node using the tree select property. This property is of

type native because its underlying object (a tree node) is a Java Swing object. Youôll see

this type used extensively when writing GUI code. To get the nodeôs content property,

we use the notation node@<Node>?.content . The latter requires some explanation. Because

node is of type native , we must cast it to the correct GUI element type before we can

reference any of its properties. We do this using the notation node@<Node>. To get a

property, we usually use the dot notation. However, when a node is deselected, node ends

up being null , so to guard against this, we use the question-dot (?.) notation instead of

the dot notation. This is a JavaGram convenience that you can use when accessing a GUI

elementôs properties or an objectôs members. In other words,

 vague content = node@ <Node>?.content;

is equivalent to writing:

 vague content = node == null ? null : node@<Node>.content;

If the content is a string then we treat it as a file name, work out its path, set the image

property of picture to it, and set the east side of the split pane to picView (this causes the

image to be displayed). Otherwise, we set the east side of split pane to blank .

When you change the content of a split pane, it may adjust the divider position to

accommodate what youôre displaying. To cancel the effect of this, we get the divider

property of the split pane first and restore it last.

Adding a tab for TaskTree to our demo app produces the following.

GUI Programming 85

4.3.1 Using a Tree Model

In the above example, weôve used the direct data approach for specifying the treeôs

nodes. You also have the option of using a data model instead. The latter is useful when

the tree data is dynamic or so large that we donôt want to pre-create the nodes. For

example, if the data is sourced from a database and potentially large, it would be more

sensible to use a data model approach.

To specify a data model for a tree, set its model property to the name of the tree model

method (defined in the same class). Just to illustrate the approach, here is a revised

version of the TaskTree class that uses a tree data model.

singleton class TaskTree2 {

 <Icon icon image={ sys . use ("lib/gifs/Hammer.gif")} />

 <Tree tree event=treeHandler model=treeModel>

 </Tree>

 <Pane.split split divider=150 weight=0.3 >

 <Pane.scroll lay=$west>

 <Indirect ref={tree} />

 </Pane.scroll>

 <Panel blank lay=$east>

 <Label title="No Detail" />

 </Panel>

 </Pane.split>

 <Pane.scroll picView>

 <Label picture />

 </Pane.sc roll>

 static map<int , map> tasks @= [

 1=>[$name=>"Building a shed", $subs=>[2, 3, 4, 5, 6]]

 ,2=>[$name=>"Build foundation", $subs=>[7, 8, 9]]

86 JavaGram Agile Development

 ,3=>[$name=>"Build frame", $subs=>[10, 11, 12], $data=>"Shed.gif"]

 ,4=>[$name =>"Install roof"]

 ,5=>[$name=>"Install cladding"]

 ,6=>[$name=>"Install door"]

 ,7=>[$name=>"Mark base and dig"]

 ,8=>[$name=>"Secure wire mesh"]

 ,9=>[$name=>"Pour concrete"]

 ,10=>[$name=>"Measure and cut timber "]

 ,11=>[$name=>"Erect and nail walls"]

 ,12=>[$name=>"Secure frame to foundation"]

];

 static int rootId = 1;

 protected vague treeModel (native tree, symbol cmd, native node, vague subnode) {

 switch (cmd) {

 ca se $count:

 return node == null ? 1 : sys . length (getSubs(node));

 case $get:

 int id = node == null ? 1 : getSubs(node)[subnode@ int];

 return getNode(id);

 case $index:

 retu rn indexOfSubnode(node, subnode);

 case $leaf:

 vector subs = getSubs(node);

 return subs == null || sys . length (subs) == 0;

 }

 return null ;

 }

 protected vector <int > getSubs (native node) {

 map content @= node == null ? tasks [rootId] : node@<Node>.content;

 return (content == null ? null : content[$subs])@ vector <int >;

 }

 protected native getNode (int id) {

 map task = tasks [id];

 if (task[$node] == null)

 task[$node] = gui . create ($Node, map($title=>task[$name], $content=>task,

 $image=>icon));

 return task[$node];

 }

 protected int indexOfSubnode (native node, native subnode) {

 if (node != null) {

 int idx = 0;

 for (int id in getSubs(node)) {

 if (tasks [id][$node] == subnode)

 return idx;

 ++idx;

 }

 }

 return 0;

 }

 protected void treeHandler (native comp, symbol even t) {

 switch (event) {

GUI Programming 87

 case $select:

 int oldDiv @= split.divider;

 vague node = tree.select;

 string file @= node@<Node>?.content@ map?.$data;

 if (file != null) {

 string path = sys . pathConc ("doc/code/chap4", file);

 picture.image = sys . use (path);

 split.east = picView;

 } else

 split.east = blank;

 split.divider = oldDiv;

 break ;

 case $drill:

 case $expand:

 case $collapse:

 break ;

 }

 }

}

The data that drives the model is denoted by the tasks static map. Weôve modeled this

such that it resembles data retrieved from a database. It maps each task ID to its

definition. For parent tasks, the latter contains a $subs key that points to a vector of its

children task IDs.

The tree model is denoted by the treeModel() method, which accepts four possible

commands:

¶ $count requires the number of children of node to be returned.

¶ $get requires the n-th child of node (as denoted by subnode as an integer index) to be

returned.

¶ $index requires the zero-based index of subnode as a child of node to be returned.

¶ $leaf requires true to be returned if node is a leaf node.

These are defined using three utility methods, which are self-explanatory, except for

getNode() . The latter returns a <Node> for a given task ID. New nodes are created

procedurally using the gui.create() method, which takes a GUI element name (as a

symbol) and a map that specifies its properties. A newly-created node is cached by

storing it in the task definition map under the $node key, so that we donôt need to recreate

it every time.

Finally, note how weôve changed our approach to what we store in the content property

of each node ï the corresponding task definition map. Therefore, treeHandler() is revised

accordingly.

88 JavaGram Agile Development

The above model-based tree produces exactly the same visual result as the earlier direct

data version.

4.4 Tables

Most applications must deal with tabular data (i.e., data items that conform to the same

structure such as objects of the same class, or maps sharing the same keys). A common

example is the result of a search. The <Table> element is ideal for visualizing tabular data.

Recall the Person class from an earlier section and suppose that we need a table to display

persons retrieved from a database.

<jag domain="doc/code/chap4">

<load >

 "doc/code/chap4/PersonPanel"

</load>

singleton class PersonTable {

 static final vector <map> TABLE_FORMAT @= [

 [$key=>$firstName, $title=>"First Name", $width=>80, $align=>$west]

 ,[$key=>$lastName, $title=>"Last Name", $width=>100, $align=>$west]

 ,[$key=>$sex, $title=>"Sex", $width=>40, $align=>$west]

 ,[$key=>$dob, $title=>"DOB", $width=>80, $align=>$east, $format=>"dd MMM yyyy"]

 ,[$key=>$occupation, $title=>"Occupation", $width=>60, $align=>$west]

 ,[$key=>$smoker, $title=>"Smoker", $width=>40, $align=>$center]

];

 static vector <Person > persons = [

 [@Person firstName=>"John", lastName=>"Smith", sex=>"Male"

 , dob=>[#1982 - 12- 22], occupation=>"Mechanic", smoker=> true

],

 [@Person firstName=>"Linda", lastName=>"Forbes", sex=>"Female"

 , dob=>[#1987 - 02- 15], occupation=>"Account ant", smoker=> false

],

 [@Person firstName=>"Bob", lastName=>"Smart", sex=>"Male"

 , dob=>[#1984 - 07- 11], occupation=>"Teacher", smoker=> false

]

];

 <Panel panel>

 <Layout.border/>

 <Pane.scroll lay=$center >

 <Table table format={ TABLE_FORMAT} data={ persons } autoSize= true

 event=tableHandler />

 </Pane.scroll>

 <Panel lay=$south>

 <Button title="Dump" action={dump()} enable={canDump()} />

 </Panel>

 </Panel>

 protected vague tableHandler (native comp, symbol event) {

 switch (event) {

 case $select:

 gui . maintain (panel);

GUI Programming 89

 break ;

 case $drill:

 dump();

 break ;

 case $hitCell:

 break ;

 }

 return null ;

 }

 protected void dump () {

 sys . ppln (persons [table.select@ int]);

 }

 protected boolean canDump () {

 return table.select != null ;

 }

}

</jag>

Like trees, tables can accept direct data or a data model. Weôve used the direct data

approach, for which weôve created a static vector of Person objects. In a real application,

this data is likely to originate from a data source such as a database.

The tableôs format property is set to the TABLE_FORMAT vector which specifies the format of

each column as a map whose structure should be self-explanatory. In the panel below the

table, weôve created a button for dumping the data for the currently-selected row.

Weôve also specified an event handler method for the tree. A tree can raise three kinds of

event:

¶ $select is raised when a row is selected or deselected. For this event, weôre calling

gui.maintain() on the whole panel so that JavaGram can update the visibility of the

components.

¶ $drill is raised when a row is double-clicked. In response to this event, we dump the

rowôs object to standard output by calling dump() .

¶ $hitCell is raised when a cell is clicked.

Adding this to the demo application gives us the following.

90 JavaGram Agile Development

Note how weôve used $format for the DOB column to specify a preferred date format.

This approach is handy but of limited use. For example, it doesnôt give us a way of

changing the format of the Smoker column to use ticks instead of true/false. Weôll present

a more general approach shortly.

By default, the even and odd rows of a table are drawn with different background colors

to aid readability. You can change the row background colors by setting the bgColorOdd

and bgColorEven properties.

A table can be sorted by any given column. To sort in ascending column order, click on

the column heading. To sort by descending column order, shift-click on the column

heading. In either case, a small triangle appears in the column heading to indicate the sort

order. You can turn off sorting by setting the sortAscend or sortDescend property to null .

You can also control the sorting order by right-clicking on a cell or heading and choosing

from the resulting popup menu.

4.4.1 Using a Table Model

Letôs look at a revised version of the above example to illustrate a few more things ï the

ability to edit cells, use of a data model, and more elaborate formatting of the cells.

singleton class PersonTable2 {

 static <Field.date dateField />

 static <Option.tick smokerField ali gn=$center enable= false/>

 static <Combo occupCombo data={ PersonPanel . OCCUPATIONS} />

 static <Icon icon image={ sys . use ("lib/gifs/Person.gif")} />

 static final vector <map> TABLE_FORMAT @= vector (

 [$key=>$firstName, $title=>"First Name", $width=>70, $align=>$west, $icon=> true]

 ,[$key=>$lastName, $title=>"Last Name", $width=>80, $align=>$west]

 ,[$key=>$sex, $title=>"Sex", $width=>40, $align=>$west]

 , map($key=>$dob, $title=>"DO B", $width=>80, $align=>$east,

GUI Programming 91

 $format=>"dd MMM yyyy", $editor=> dateField)

 , map($key=>$occupation, $title=>"Occupatio n", $width=>80, $align=>$west,

 $editor=> occupCombo)

 , map($key=>$smoker, $title=>"Smoker" , $width=>40, $align=>$center,

 $editor=> smokerField)

);

 static vector <Person > persons = [

 [@Person firstName=>"John", lastName=>"Smith", sex=>"Male"

 , dob=>[#1982 - 12- 22], occupation=>"Mechanic", smoker=> true

],

 [@Person firstName=>"Linda", lastName= >"Forbes", sex=>"Female"

 , dob=>[#1987 - 02- 15], occupation=>"Accountant", smoker=> false

],

 [@Person firstName=>"Bob", lastName=>"Smart", sex=>"Male"

 , dob=>[#1984 - 07- 11], occupation=>"Teacher", smoker=> false

]

];

 <Panel panel>

 <Layout.border/>

 <Pane.scroll lay=$center>

 <Table table format={ TABLE_FORMAT} editable= true autoSize= true

 styled= true model=tableModel event=tableHandler />

 </Pane.scroll>

 <Panel lay=$south>

 <Button title="Dump" action={dump()} enable={canDump()} />

 </Panel>

 </Panel>

 protected vague tableModel (native comp, symbol cmd, int row, int col) {

 switch (cmd) {

 case $rows:

 return sys . length (persons);

 case $cols:

 return sys . length (TABLE_FORMAT);

 case $get:

 return persons [row][TABLE_FORMAT[col][$key]@ symbol];

 case $put:

 persons [row][TABLE_FORMAT[col][$key]@ symbol] = table.put;

 break ;

 case $style:

 return TABLE_FORMAT[col][$key] == $lastName ? [$bold] : null ;

 case $icon:

 return TABLE_FORMAT[col][$key] == $firstName ? icon : null ;

 case $sortAscend:

 case $sortDescen d:

 sys . sort (persons , cmd == $sortAscend, vector (TABLE_FORMAT[col][$key]));

 break ;

 }

 return null ;

 }

 protected vague tableHandler (native comp, symbol event) {

 switch (event) {

92 JavaGram Agile Development

 case $select:

 gui . maintain (panel);

 break ;

 case $drill:

 dump();

 break ;

 case $hitCell:

 break ;

 }

 return null ;

 }

 protected void dump () {

 int row @= table.hitCell[0];

 int col @= table.hitCell[1];

 sys . println (tableModel(table, $get, row, col));

 }

 protected boolean canDump () {

 return table.select != null ;

 }

}

Here is what weôve done. Weôve set the editab le and styled properties of the table to

true, and set its model property to tableModel() . Additionally, weôve extended the

TABLE_FORMAT vector to nominate an editor for the last three columns. This enables the

user to directly edit the cells in these columns. A key point to note is how weôve used

map() to specify the format of these columns, because each is referring to a non-literal

(e.g., dateField).

The interesting stuff happens in tableModel() , which accepts these possible commands:

¶ $rows requires the number of table rows to be returned.

¶ $cols requires the number table columns to be returned.

¶ $get requires the value at the cell denoted by row and col to be returned.

¶ $put is required for editable tables and should make the change to a cell permanent.

The updated value can be accessed using the put property of the table.

¶ $style should return null or a vector of values that specify the font style and/or color

of the text in a cell. This has no effect unless the styled property of the table is also

set to true.

¶ $icon should return null or the icon to be displayed in a cell. This has no effect unless

the $icon key of the column format is also set to true.

¶ $sortAscend and $sortDescend should sort the underlying data for the model.

A minimal data model must implement the $rows , $cols , and $get commands.

GUI Programming 93

Finally, the behavior of an editable table is noticeably different from a read-only table. In

the latter, clicking on a row causes the entire row to be selected, whereas in the former,

the specific clicked cell is selected. Consequently, the dump() method is revised to behave

differently ï it writes to standard output the value of a cell, not the entire row!

The visual result of the revised table is shown below.

4.4.2 Lists

A list is a table that has a single column and no heading. Functionally, however, lists are

closer to combo boxes than to tables. Lists are rarely used because combos are just as

good and take less real estate. The only situation in which theyôre preferred is when you

want to select multiple values from the list, which is not possible with combos.

There is also a list element that provides a checkbox for each row. This is suitable for

situations where the user needs to nominate a number of things from a potentially large

set.

Here is a class that demonstrates the use of lists.

<jag domain="doc/code/chap4">

singleton class ListTest {

 static final vector <string > CAPITAL_CITIES = [

 "Sydney", "Melbourne", "Brisbane", "Perth",

 "Adelaide", "Canberra", "Hobart", "Darwin"

];

 static final vector <list > ACTIVITIES = [

 ("Recreation and Sports", true)

 ,("Sight Seeing", false)

 ,("Bush Walking", false)

 ,("Wine Tasting", true)

 ,("Dining", true)

 ,("Music and Theatre", true)

94 JavaGram Agile Development

];

 static final vector <list > LANGUAGES = [

 ("English", true)

 ,("Italian", true)

 ,("Greek", true)

 ,("Chinese", true)

 ,("Vietnamese", false)

 ,("Japanese", false)

];

 <Panel panel>

 <Layout.horizonta l/>

 <Panel title="Australian Capital Cities">

 <Layout.border/>

 <Pane.scroll lay=$center>

 <List cities data={ CAPITAL_CITIES } multiSelect= true/>

 </Pane.scroll>

 <Panel lay=$south>

 <Button title="Select All" action={cities.selectAll = true } />

 <Button title="Dump" action={ sys . println (cities.select)} />

 </Panel>

 </Panel>

 <Panel title="Activities">

 <Layout.border/>

 <Pane.scroll lay=$center>

 <List.tick acts data={ ACTIVITIES } />

 </Pane.scroll>

 <Panel lay=$south>

 <Button title="Tick All" action={tickAll(acts, true)} />

 <Button title="Untick All" action={tickAll(acts, false)} />

 <Button title="Dump" action={ sys . println (ACTIVITIES)} />

 </Panel>

 </Panel>

 <Panel title="Languages">

 <Layout.border/>

 <Pane.scroll lay=$center>

 <List.tick langs model=langModel />

 </Pane.scroll>

 <Panel lay=$south>

 <Button title="Tick All" action={tickAll(langs, true)} />

 <Button title="Untick All" action={tickAll(langs, false)} />

 </Panel>

 </Panel>

 </Panel>

 protected void tickAll (native lt, boolean tick) {

 lt@ <List.tick> .tickAll = tick;

 lt@ <List> .refresh = true ;

 }

 protected vague langModel (native comp, symbol cmd, int idx) {

 switch (cmd) {

 case $count:

 return sys . length (LANGUAGES);

GUI Programming 95

 case $get:

 return LANGUAGES[idx][0];

 case $tick:

 return LANGUAGES[idx][1] == true ;

 case $toggle:

 return LANGUAGES[idx][1] = ! LANGUAGES[idx][1]@ boolean ;

 }

 return null ;

 }

}

</jag>

The class uses a horizontal layout to display three lists side by side. The first list is

defined using the <List> element and displays the Australian capital cities. The second

list is created using the <List.tick> element and displays a list of tourist activities. Both

these lists are defined using direct data. Note that the expected data format for a tick-list

is a vector of lists, where each list consists of a string and a boolean. The latter controls

the tick state of the item (true means ticked).

The last list demonstrates the use of a data model, implemented by the method

langModel() .

The visual result of this class is shown below.

4.5 Grids

One limitation of tables is that all rows need to conform to the same structure (i.e., share

the same columns). Some user interface scenarios are better served by allowing different

rows to be structured differently. Grids offer this flexibility, as well as the ability to

specify dependencies between the cells. Conversely, grids lack some of the strengths of

tables ï you canôt use a data model because there is no uniform row structure and,

96 JavaGram Agile Development

consequently, it would be impractical to use grids for very large data sets. The choice,

therefore, involves tradeoffs.

As an example, the following class uses a grid to implement an online shopping cart. A

grid is defined using the <Grid> element, within which you can define <Column> and <Row>

elements. The purpose of a <Colu mn> element is to specify the properties of a column,

whereas a <Row> element defines a visible row in terms of <Cell> elements that define the

data to be displayed inside the cells. Usually, the same property can be defined at cell,

column, or row level. If a property is not explicitly defined for a cell, then itôs inherited

from the column, the row, or a default cell (in that order).

<jag domain="doc/code/chap4">

singleton class CartGrid {

 static final string HEAD_BG = "0xCCCCCC";

 static final st ring HEAD_FG = "0x990000";

 <Grid grid>

 <Column description size=200 kind=$text lock= true/>

 <Column quantity size=50 format="0,000" align=$east kind=$number />

 <Column weight size=50 format="0,000.00kg " align=$east kind=$number lock= true/>

 <Column price size=70 format="$0,000.00" align=$east kind=$number lock= true/>

 <Column delete size=50 align=$center lock= true/>

 <Row lock= true bgColor={ HEAD_BG} fgColor={ HEAD_FG}>

 <Cell value="Shopping Cart" align=$center colSpan=4 font={bold} />

 </Row>

 <Row lock= true bgColor={ HEAD_BG} fgColor={ HEAD_FG}>

 <Cell value="Items in Cart" />

 <Cell value="Quantity" />

 <Cell value="Weight" />

 <Cell value="Price" />

 </Row>

 <Row lock= true >

 <Cell value="Add Item" border=0 link={ Catalog . singleton .chooseProducts()} />

 <Cell value="Shipping:" border=0 />

 <Cell value=0 />

 <Cell calc ={shippingCost()} />

 </Row>

 <Row lock= true >

 <Cell value="Checkout" border=0 link={checkOut()} />

 <Cell value="Total:" border=0 />

 <Cell calc={totalColumn(2)} />

 <Cell calc={totalColumn(3)} />

 </Row>

 </Grid>

 public void addItems (vector <Product > prods) {

 for (Product prod in prods) {

 int idx = grid.rows - 2;

 GridRow row = new GridRow(this , prod);

 grid += list (row.row, idx);

 }

GUI Programming 97

 grid.recalc = true ;

 }

 void deleteRow () {

 int row = grid@ <Grid> .hitCell[0];

 grid - = row;

 grid.recalc = true ;

 }

 protected real totalColumn (int col) {

 real total = 0.0;

 for (int row = 2, n = grid. rows - 1; row < n; ++row) {

 vague val = gui . getCell (grid, row, col)@ <Cell> .value;

 if (val instanceof real)

 total += val@ real ;

 }

 return total;

 }

 protected real shippingCost () {

 return totalColumn(2) * 5.5;

 }

 protected void checkOut () {

 //gui.toHtml(grid);

 }

}

</ jag >

The properties used in this example are:

¶ size specifies the width of a column or cell.

¶ format specifies the format for displaying values within a cell.

¶ align specifies how a cellôs value is to be aligned.

¶ kind specifies the kind of value to be displayed in a cell, and must be one of: $text ,

$textArea , $combo, $number , $date , $time , or $tick .

¶ lock allows a cell to be locked so that its value canôt be changed.

¶ fgColor and bgColor control, respectively, the foreground and background color of a

cell.

¶ value denotes the actual value displayed in a cell.

¶ rowSpan and colSpan control the vertical and horizontal span of a cell (both default to

1).

¶ font specifies the preferred font for displaying a cellôs value.

¶ border specifies the thickness of a cellôs border line.

¶ link specifies the action for a óhotô cell (the cell value is underlined and when clicked

causes the link action to execute).

98 JavaGram Agile Development

¶ calc specifies a formula for automatically calculating the value of a cell.

Here is what this grid looks like on the screen.

Note how the Add Item and Checkout cells are linked to the addItem() and checkout()

methods. Also note how the totalColumn() method is used by the calc property of the last

two cells. This method uses gui.getCell() to access the value of the cells above it, and

adds them up to dynamically update the totals. Certain events (e.g., the user editing a

cellôs value) cause JavaGram to automatically process all calc properties in a grid. This

can also be done programmatically by setting the gridôs recalc property to true, as done

by the addItem() method. JavaGram performs a recalculation of a grid by processing the

cells left to right and top to bottom. Therefore, calc properties may contain backward but

not forward cell references.

The intended behavior for the Add Item link is to display another window, listing the

available products for purchase, from which the user can make selections. These

selections are then added as rows above the Add Item row.

CartGrid.addItem() uses three other classes. Product is a simple class for representing

purchasable products.

class Product {

 protected getable string id;

 protected getable string name;

 protected getable real weight;

 protected getable real price;

 public string format () {

 return $"{id} {name} @${price}";

 }

}

GridRow is a simple class for adding a new grid row that represents a product added to the

cart.

GUI Programming 99

class GridRow {

 sta tic final string INPUT_BG = "0xFFFFFF";

 CartGrid cart;

 Product product;

 delayed <Row row>

 <Cell value={product.format()} />

 <Cell quant value=1 bgColor={ INPUT_BG} />

 <Cell calc={quant.value@ int * product.getWeight()} />

 <Cell calc={quant.value@ int * product.getPrice()} />

 <Cell value="Delete" link={cart.deleteRow()} />

 </Row>

 public GridRow (CartGrid cart, Product product) {

 this .cart = cart;

 this .product = product;

 }

 public nati ve getRow() {

 return row;

 }

}

The constructor records the grid to which the row is to be added and the product that it

represents. Note how the row is defined as a delayed class member. The reason is that

some of the rowôs cell properties refer to class fields, such as cart and product . Itôs

therefore vital that the row is initialized after the constructor has set these fields to valid

values.

The third and fourth cell use calc properties to, respectively, calculate the product weight

and price, based on the purchase quantity. The last cell has a link property that allows the

row to be deleted.

Finally, the Catalog class displays a window that lists the available products for the user

to choose from. The products are displayed in a table, for which weôve setup some

dummy data. Note how the multiSelect property of table is set to true to allow the user

to select multiple rows (by holding the control or shift key down while clicking).

This window is created using a <Dialog> element (dialogs are described in the next

section).

singleton class Catalog {

 vector <Product > selected;

 <Dialog dialog title="Choose a Product" parent={ CartGrid . singleton .grid}

 width=300 height=200>

 <Layout.border/>

 <Pane.scroll lay=$center>

 <Table table data={ PRODUCTS} format={ FORMAT} autoSize= false

 multiSelect= true event=tableHandler />

 </Pane.scroll>

 <Panel lay=$south>

100 JavaGram Agile Development

 <Button title="OK" action={ok()} enable={canOk()} />

 <Button title="Ca ncel" action={cancel()} />

 </Panel>

 </Dialog>

 protected vague tableHandler (native comp, symbol event) {

 switch (event) {

 case $select:

 gui . maintain (dialog);

 break ;

 case $drill:

 ok();

 break ;

 }

 return null ;

 }

 protected void cancel () {

 selected = null ;

 dialog.show = false ;

 }

 protected void ok () {

 selected @= vector ();

 for (int idx in t able.select@ vector <int >)

 sys . append (selected, PRODUCTS[idx]);

 dialog.show = false ;

 CartGrid . singleton .addItems(selected);

 }

 protected boolean canOk () {

 return table.select != null ;

 }

 public vector <Produc t > chooseProducts () {

 table.select = null ;

 gui . maintain (dialog);

 dialog.show = true ;

 return selected;

 }

 static vector <map> FORMAT = [

 [$key=>$id, $title=>"ID", $width=>50, $align=>$west]

 ,[$key=>$na me, $title=>"Name", $width=>150, $align=>$west]

 ,[$key=>$weight, $title=>"Weight", $width=>60, $align=>$east, $format=>"0.00kg"]

 ,[$key=>$price, $title=>"Price", $width=>80, $align=>$east, $format=>"$0,000.00"]

];

 static vector <Prod uct > PRODUCTS = [

 [@Product id=>"EG001", name=>"Portable CD Player", weight=>0.12, price=>120.95]

 ,[@ Product id=>"EG002", name=>"Plasma TV", weight=>28.45, price=>2199.0]

 ,[@ Product id=>"EG003", name=>"Coffee Maker", weight=>6.8, price=>175.99]

];

}

The chooseProducts() method is the main entry point, which displays the dialog and once

the user presses the OK button, returns a vector of products that the user has selected.

GUI Programming 101

Weôve defined the enable property of the OK button such that the button is enabled only

when the user has selected at least one row from the table.

Here is what the dialog looks like.

Referring back to the CartGrid.addItem() method, it calls chooseProducts() and iterates

through the returned vector, adding a grid row for each product. A row is added by

creating an instance of GridRow and then adding the row to the grid using the notation

grid += list (row.row, idx);

The right side of this assignment is a list of two elements: a grid row and a zero-based

row index. This causes the row to be added to the grid at the nominated row position.

Choosing the first two products from the list and setting the quantity of the first row to 2

produces the following.

Now, have a look at the method CartGrid.deleteRow () . This method is invoked when the

user clicks the Delete hot link of the last cell of a product. It removes the row using the

following notation:

grid - = grid@ <Grid> .hitCell[0];

