JavaGram
Agile Development

Version4

Sharam Hekmat
PragSoft Corporation

Copyright© 20092012 by Sharam HekmaPragSoft Corporation
All rights reserved.
Printed in the USA by PragSoft Press.

To download JavaGram and code sampleliged in this book, visivww.pragsoft.com

To send feedback to the author (bug reports, enhancement suggestions, andwhidike)
to: hekmat@pragsoft.com

JavaGram is free for necommercial use. To enquire about commercial use and licensing
of JavaGramor formal trainingwrite to: sales@pragsoft.com

Contents

1 INTRODUGCTION ..ttt eea ettt et e et e e e eeaes s b e e ee e et e eeeaaaeeaeeeessaaaseeeeeaaaaaaaaaeeeesans 12
I R = 7 Y01 0 11|\ | J R 12
00 0t R Vo 1111V O 1 =Y - TSP PP PP PPPP PP 13
1.1.2 Barriers to Rapid DEVEIOPIMENL........ocuuiiiiiiiiiiieeeiieee ettt eeie e 14
1.1.3 Barriers to RApid TOSHNG.......uueiieiiiiiiiie ettt rmmee e rmnnees 15
1.1.4 Barriers to Rapid EVOIULION........ccooiiiiiiiiiii it ee e 16
1.2 SALIENT FEATURES ...cttttttttttiieeie e e et e et sttt et e e e e e e e e e et e s e e e mnne e e e e e e s e e e e e s e s b b et e e ee s s e s sasannnnnnenne 16
O R Y=Y V= g =Y o 1 o | USRS 17
1.2.2 Browserbased and Native Desktop CHEntS........cccoeeeeiiiiiiiiiccceee e, 19
1.2.3 Static and DynamiC LOAING.........ccccuururiiiiirieeeisseinniisiesereeeeeesessnssresresseeerrrereereeeeeaan 19
2 R @0 To [T - V]] oo TSR 19
1.2.5 BUIE-IN TYPES ettt ettt ettt e et e skt e e e e e e st b e e e e e smmne e e s anbreeeeeesanne 20
1.2.6 ODJECt OFENTALION.uiiiiii ettt et e e et eeeme e e e nneee 20
1.2.7 MUtiple INNEIANCE.iiiii it ree e 21
1.2.8 AULOMALIC REMOLING.....iittiiiiiei ittt et e e et eeeee e e e e e e 21
1.2.9 Asynchronous Method INVOCALION.............coiiiiiiiiieeeiiii e 22
1.2.10 DECIarative GUIS.......cooeeiiiieeeee et eeee e enen e 22
1.2.11 Parameterized TeXE......ooiiiiiiiiiiiis e e e e e e e e e e e rer e e 22
1.2.12 Database INteraction.............uuuuiiiiii i cceciiee e e e e e e e e eee s 23
1.2.13 Serialization and ParSing........ccooeeeeiiiiieeiiieeer e e e e erees e e e e e e e e 23
1.2.14 BUSINESS ODJECLS.....ciiiiieeiiiiiiii e e et s e e e e e e e e e e e senneeaeeaeeenen 23
1.2.15 N oY= W (0] (T o] 0 1= =i o 1O 23
1.3 IMPLEMENTATION .. tttttuueetettinseeteetessmee s e e s eetaa s e e e eebba s e e e e mmmee s s e e e e ebb s e e e e eab s annne e s ee b neeeenbaneeas 24
1.3.1 JavaGram Runtime ENVIFONMENL..........ooouiiiiiiiiiiiiee e ee e eveeee e ee e 24
IS JZ A 7o o 1] 11 = 11 [0 IO PO PSP PP PPPPP 25
G TG BN = 1V 7= (] = T 10 PP 26
1.3.4 JavaGram SErVEr MONITOL ieie i e e ettt eeeeees e e s e e e e e e e e e eeeeebebaaaamnnes 26
1.3.5 JavaGram Standard LiDrary SCHPLS........ccciiiiiiiiiiiiiiee it reeee e 26
1.4 DOWNLOAD AND INSTALLATION .ittuuuiitttruueseeessnnssesnnnseesssnseessssnsseessstsnmsssessesssnseesesssneesemmnn 27
2 FUNDAMENTALS .ottt e ettt ee e e ann b bnbeeeee e 28
2.1 EXAMPLE ..ttt e e e et e et ————— et et e et et et e aanneanan 28
2.2 L OADING SCRIPTS. cittuutittttuiiestettuuesaaaesasstsssseeesssneeeesss s eeseetsasaaseassaaeesananeetnaetesrnneeeenes 30
2.3 EXPRESSIONS ANDSTATEMENTS. . ttttttunietttttunseetestummssseeeeesssneeeesssneesannnsssstaetesteesesnnn 34
A S I = T PSPPSRt 34
2.5 CONTROL FLOW ..ttt e e e e e e e eaee s e e e e e e e et e e et etataaa s semtann e e e e e e eeaaeeeeenes 35
P2 T B 1 = =y 11 S PTRPR 39
2.7 COMPOSITES. ..t e et eeie ettt se ettt e e e e e e e e e e et e et ee e anaeeeeeeeeesbana i aaeeeeeeeaaaaaaseeeeeeaeeeeeesrnsnnnnnamnn 42
2.7.1 CONMAINEIS......ccoiiiiitiiieie e eeeeie e e ettt e et e e eeeeeeaeeesesrananeeeesestababaan e aenns 42
A 0 T Vo o] S 44
A S | - T o1 SO PSPPSR UUPPPPIY A7
ST O o= Tox I =T = | 50
2.7.6 Literal VersuS DYNAIMIC........c.ouuiiuiiiiii s s ceeeiiii e e e e e mmme et s e e e e e e e e e e s aneeeaeeas 52
2.8 EXCEPTIONHANDLING ...uuiiiiitiiee i it e e esieemttts e e e et e e e e eaaa s s aaaee e s eata e e e eesa s e e e e s smmass s e e e eernnnes 53
3 OBJECT-ORIENTED PROGRAMMINGooiiiiiiiiiiaaii e 56
G 70 A N[= i 7] = PSPPI 56
3.2 SHOPPINGCART EXAMPLE ... ittt ieeeeiis ettt eeee s s e e e e e e e e e eeeennaeeeaeeeeeeestnnnnn s s e s e emnnnanaeeeeeas 58
3.3 IMUTUAL CLASSES. .. i ieeieiiieeeeieittn s s seetannaaseeeeeeaeeeeeaets nmneeeeassnsnnnnsseseeeeeeesnnnseeeeeeeeesssnnsnnnns] 6.7
2 Y I 10 - I 1= 68

Content 3

3.5 THIS AND SUPER. ...t uittiitiiit ettt et e ee e st e e e e et e s s e et e s mee st s e e s et e s b s ea s st s smmnesa s st e sbssnaanaes 68

3.6 METHOD PARAMETERS. ... e iiiiiiiiitittit et eseett s e e e e e e e et et eeebt b mmmeeeeetsbbbb e e s e e e aaaaeanansaaaaaaeeeennes 69
3.7 CLASSVARIABLESctiiiiieeee e et et eeee e oo e e e e oot e e e s o b bbbttt e e et e e eaaes st bbb e br e e s e e e eeeas 71
GUI PROGRAMMING ..ottt ettt e e e e et e et s eeebb b b e s r e e eees 12
4.1 DEMO APPLICATION ...ttttttttteeeettttettaeaesaaaaseettttttttaaaaaaasaasaasamamtetetaeaaaaaasassasaaaasnnnneeeesaessasaaaannns 72
4.2 PANELS, LAYOUTS, AND FIELDSuuuuitiitiitiiiieieeeetieaaittitrssseeeeeeeeeeeeeeesemsmssseeeeeaeaaeaaeeeseessesammneas 74
o R B - = =11 T 11T TSP 380
4.3 TREES. ..t tttttttttttt ittt ettt ettt ettt e oo oo oo e ee e e e e e oo e e oo h b e b e e e e e a b e b e e b e e e e e e e e eaannnnnnrnn e 82
4.3.1 USING @ Tre@ MOUEL.......oeiiiiiiiiiiiie et emmee e 85
A4 TABLES ..ottt e e et e e ettt ettt ettt o oo oo e e et eneee e e e e eeeeeee ettt b aa s eaeh b e e e e e eeeeeeeeetebebannneeeeeres 88
441 USINg @ Table MOUEL.........uuiiiiiiiiii e 20
A T 1 PP P UR P PR 93
A5 GRIDS ... ittt ettt ettt b ah oo e e e e ettt teeeeeeeee et eeebaba e e e eeaa e aeaeeas 95
4.6 COMPONENTSTATUS ..oiiitieeieteieetaa ettt eeee e s s e s s e s aabee bbb be e e st eeessassses b b ee b e e s e e e e e e e e s eaassnbensneeeeees 102
A7 DIALOGS AND ALERTS. . .utttttttteteetttteeteeaeaaaasseettetteettaaaaaaasassaaaatettataaaaasaasassaaaaaannneeasessessans 107
0t R T 1 o T PSSP 107
O G = 4 (= TP PP T PO PPPPPPPPPPPPPRPT 109
A.7.3 FIlE CROOSEE.....ciiiiiiiee et e e e e e 110
A.7.4 COlON CROOSEE ...ttt bbb e e 111
4.8 GRAPHSciiititttt ettt e ettt et et et e e et ettt et eee—— e e e e e e et e ettt ettt e ———— et e aebaba e e e e e e e aeeeaaneaas 112
Tt R = 1 - T U EURURPPRR 112
I W [T] =T o L PR O PP PPPPP PP 114
4.8.3 Bar and Stack Graphis........ccccuiiiiiiii it reeee e neee e 115
4.8.4 BUDDIE Graph.....ccoiiiiiiiiie e 117
4.8.5 PIPE Graph. ..ot e 119
4.8.6 Gauge and Range Bar.........ooooiiiiiiiiiii e ar e 120
R A (011 1 =T o] o SRS 121
4.9 MENUS AND TOOLBARS.cciittittitittntuui s seetnna s s e e eeeeeeeeess s s emnteeeeessebab s e e e e eesaaansseaeeeaees 125
4.9.1 PUI-AOWN MENUSottt oottt e ee bbb bbb e e et e et e e e e eaasbnbeeneeees 125
4.9.2 POPUP MEBNUS ...ttt e e e et e e e e e e e aat s e e e et b rana e e e eetb e eaaees 128
e T T e To 1 o= 1 = SRR 128
4,10 GOOGLEMAP. ...t e e e e e e e e et ettt e e ee et e ettt te bbb e e e e e e aaaaa e e e e e e e aeaeaeeearares 130
411 CODE EDITOR. ..ttt ietiieteeeeeittt e sttt a e s e e e e e e e et et ee e teaaeeeeeeeeeetasa e e aeeeeeaaaaaaseeeeeaeeeenneennees 132
4.12 WORKING WITHHTIML ...ttt e e e e e e e e e eeeeeeeeeeeas 134
4121 DiISPIAYING HTIML.....eiiiiiiiiiiiiie et se e e e 134
4122 Generating HTML REPOIS........ciiuiiiiiieiiiiiieeeiie ettt eeebbe e eaeaneee e 136
4.12.3 (CT=T o 1=T = a T I [=T =P 137
413 TIPS AND TRICKS. ..ttt et e e e et et ettt temmt e et ee et e e e e e e e e e aaaesaaeeeaeeeeeeeebebaa s ememr e e e e e e eeeeas 137
4.13.1 (0L T [o T = 0] [T gl ol PN = P 137
4.13.2 Managing Component VisiDility............coooiiiiiiiiii e eee e 138
4.13.3 CorreCt USe Of LAYOULS.......ccciii e e e e e e enee s e e e e e e e e e e e eee e e 139
4.13.4 Managing PeriodiC TaSKS.........uuuuiiiiiiiiieiiiieeer et e e e e e e e eeeans 140
4.13.5 USING WOIKEr TRIEAUSeviiieiiiiieii e 141
4.13.6 Procedural Creation of COMPONENLS........cooiuuiiiieiiiereriiee e 143
4.14 BROWSERBASED GUIS.... .ottt ettt e e e e e e e e e eeeee e e e e e 144
415 SUMMARY OF ELEMENTS ...uuutttttietieeiteeteeseeeeeeeteeeeeeeeeteaaaaaasssssassmnmeeaaaaesesssssssssnnnsnsssnnnesses 145
SQL PROGRAMMING ...ttt e eee s sttt eeeaess e ese et eeeeeeeeeeeanesssesnnneneees 147
5.1 WORKING WITH DATABASESceeeeeeeieiieisiettnieensessessassssssssssssssesseenassssssssssnssnssnnnneeeessnansnnes 147
5.1.1 EXPHCIt CONNECHION.uttitiiiiiiiiiiiii ettt ettt et e e e ettt e e e e e e e e e e e e e e e e rmmneaaaaeeas 148
5.1.2 IMPLCIt CONNECLION.uutiiiiiiiiiiiiii ettt ettt a e e e e e e e e rmmne e e e e as 148
5.2 TEXTIMEMBERS. ciiiiiiititttttit e aaate e e e e e e e e ee et ettt bemeteeeeeeeebs b e s e e e e e e e aaanssaseeeaeeeeeennnnnnnnn 150
LT R = ST TP PP U PR TRURI 150
LT A 1 = 20~ o | O PPPPPPRRTN 151

JavaGram Agile Development

LT T I =7 Y N ST X 0 N TN 152

5.3.1 Creating @ Database..........coooiiiiiiiiii e 152
5.3.2 Creating TabIES.......uuuiiiiiiiiiiieie et 152
5.3.3 Dropping TabIES.......ccoieiiii et r e e eee e 154
5.3.4 INSEItING ROWS.....cciiiiiiiii it eccteeee e s e s s sttt e e s ees s ann e e e besseeeeeeeesamnssntanesnneeeees 154
5.3.5 UPAAtiNg ROWS.......iiiiiiiiiiiiiiiieesceeeeiiniistee e e e e e e e e e e e e s sesaeaeeeeeaaaaaaeeaeasesssssmmneaaaeaeaaasens 156
Lo T T B = 1= v To T 0 1< S 157
5.4 QUERIES ..ot tttitiie e e e e ettt e oot e oo e b bbb bbb e et e ee bbb b n b b et e e ettt e e e e eaernne 157
5.4.1 REtrieVING ROWS........uuiiiiiiiiiiiiit ettt ettt e et e et e e e 158
5.4.2 Processing @ RESUIT SEL......coooiiiiiiiiii et 159
5.4.3 Retrieving AttDULES. ... 159
5.4.4 COUNLING ROWS.....oiiiiiiiitiiiiie e ieeeii ettt e e e s e e et e e e e s st b e e e e e s s aeeesanbbreeeaesaae 160
5.4.5 Performing JOINS........ocuuiiiiiiiiiiiiit ettt e eeer e 160
5.5 CALLING STOREDPROCEDURES.......uuutuutttttttretetteiaaasssrestneseeeetteteeaaessaaamsereeeteetassaaassassassnnnnes 162
5.6 STREAMLINED DATA MODELING ...cttttttitieeeatteiae i eimmet e e e e e e e e e e et e e e e s s e aab e see s 163
5.7 BUSINESSOBIECTIMIODEL ...ccttittttiitieeaaaeaie it sttt e e e e e e e e e e s s e s s e e ee e e e e s s e s bbbt e s s e ees s nna 165
LT 0 R ST 0 o Yo F= R3O T o 1= o S 165

LI O 1 = o =T T |1 Vo P 168
LT 5 TR o Tor (1T SRR 173
ADVANCED TOPICS ..ottt erae e e e e e e e e s e s et anees s e s e e nnnnnne 179
6.1 CLIENT-SERVERCOMMUNICATIONcciieiiiitutununaseseeeaaaaaasaseeeaeeeeeesssssnnnnssaansssssnnnsaseesaesseseeenes 179
6.1.1 RemMOtE MELNOAS.... ...ttt ee e eeeee et e e e e e e e e e e e e s seseeeeeeaeeaes 180
B.1.2 REMOLE ClIASSES. .. uuuiiiiiiiiiiiiiiiieeeeeetieeiee ettt teeaee e e e e et saasteettaaaaaaaeaeaaessasaaaamnneaaaeaeaaeeees 185
6.1.3 EXCePtion HAaNAING......coiiiiiiiiiiieiiiieeeii ettt 189
6.1.4 Targeted REMOLE CallS........coiiiiiiiiiiiiiieeeiiece et e see e 189
6.1.5 Clocal, SIOCal, aNd SIO@.........uuuuiiiiiiiiiiii ettt 191
5.2 THREADS ... et teetettitiiee et e e e e e teee i e e e e e e et ettt e e ta b sam s e e e e e e e e et et e e e e e e s emnt et e eeeenn R e e e e e e e e aane s 192
6.2.1 WOrking With TRI€aAUS.......cccieeeieie e ee e e e e 192
6.2.2 SYNCNIONIZALIONL.......iiiiieiiitiis e e e e e e e et enn e e e ee s e e e e e aeeeaaensaeeaaeaeeenes 194
6.2.3 ThreadLoCal FIelas...........uu e 195
I S N1 =T O = 1= O R 196
6.3 ASYNCHRONOUSBEHAVIORuuiiiieieeeiiieieiiittbmmmeeeeetabsian s s s s e e e e e e e e eneaeseeeeeeeeeessnebnnn s s seennnnnns 197
6.3.1 Local ASyNnchronoUs Call..........c.uueiiiiiiiiiiiieeiiiee et 198
6.3.2 PArallel PrOCESSING......cccciiitiiiiieiiitieeeiiie ettt resi et e et e e e beeeasneeeeas 199
6.3.3 Remote ASYNChronoUS Call............uuiiiiiiiiiiieeiiii e 200
6.3.4 Guarded ASYNChIrONOUSBAIL...........coiiiiiiiieiiiieee e 201
6.4 REPORTGENERATION . ..cittttttuutuuaieeeeeeetieamaaaeeaeteteeeesatesaaa s saaesssaa s s e eeeeeeeeeeeesssbnnneeeeesennnnnnns 201
Tt R L= o o B = TP 203
6.4.2 RePOMENQGINEG ClIASS......uuuuiiieii i eeeeee s ereee s e e e e e e e e e e ee e et nmneeeaeaee 203
L T w0 o @0 g V7= T =T 0 = T 204
6.4.4 JOACONVEIEL ClASS.....citiiiiiiiiiei et ee e e 206
T b - T 1] o] [207
6.5 WWEB SERVICES .. .ciiiiittttiiii i e et e e e e eeeea s et e e e e e e et e e eetttat sttt e e e e e e e e e e eeeeetennneeeeeeessbnnnnnaaeaeeeens 213
ST A AN o] 71 (=T o3 (1 SR 213
R N - AV T - 10 4 ST [= R 213
6.5.2.1 JavaGramsService MethOOS.uuiiiiiiiiiei e 214
6.5.2.2 XML Syntax for methodCall()............eeuiiiiiiiiiieii e eeeees 215
6.5.2.3 XML Representation of JavaGram Datal............coiuuuiiiiieeeiiieeeee e 217
6.5.3 Software INStallation. ..o e 218
0 I Y10 o =SSR 219
T S O] o1 1o U] = 1T] o PRSPPI 220
6.5.4.1 Server CONfIQUIALION.uuiiiiiie e eee ettt e e e e e e e s et b e e e bbb e e e eaeaeeas 220
6.5.4.2 JAGWS CONFIQUIALION. ...ttt e et e e e e e e e et b e e eeetbreeeeaeeeaas 221
6.5.4.3 AdAitioNal JAR FilES.....ciiiiieiiiie et e e 221
6.5.4.4 ViIrTUAI DIFECIOIY....cciiutiiieiiitiie e ettt eeee e ettt r ettt eeme e skt e e ekt e e e bbbt e smmme s sbb e e e e anbneeeeann 222

Content 5

B.5.5 VIItUAI DIFBCLOMY ...ttt ettt ettt e e ettt et e e et e e e e e e e e e e e e e s e ammme e e e aaaaaeas 222

B.5.6 ClENT EXAMIPIE.uiiiiiiiiiiiieii ettt e a e e e e e 223
6.6 EFFICIENCY CONSIDERATIONS....ctttttettetattaeiaaaaammeeaeaeasassasaaaaannbasbbbneessssannnbbnbbesbeeeeeeeaannns 225
6.6.1 SySterrleVelCaChing.......cccuuiiiiiiiiiiie e ———— 225
6.6.2 Systerlevel COMPIrESSION..........cciiii i eees s s e e e ee e e e e reeeeaeeeanan 225
6.6.3 Applicationlevel Caching...........ooooii i r e e e e e e e e e e ean 226
6.6.4 Remoting Performance FaCtOrS.........uuuuiiiiiiiiiiicccciiiieiieeie et e e e aaa e 226
DE P LOYMENT ittt e ee bbbttt ettt e et et b e s e e ettt et e e e e e e e e e e eaassn e et e et taaaaeaeaaaaaaas 228
7.1 RUNNING A PROGRAMciiiiiiiiiietttta e eeeetai e e e e e e e e e e et eeetsbsbmmmteeeesbebbaa s e e e e aaaeaanaaseeaaaaaaaeees 228
7.0.1 JAVAGIAM OPLONS....coiiiiiiiiie ittt e et eeee e e e e s sbbb e e e e e s aabb e e e eeereeeeeane 228
0 AN I 1V - W O o 1[0 1 £ O TP PSP PPPPPPPR 231
T.01.3 COMPIALION. ...ttt ettt e e e et e e e smmne e e s anbbn e e e e e s aane 231
7.2 SERVERDEPLOYMENT .. .iiiiiittitittitt s s eeeetit s s e e e e e e e e eeeeetsbsbmmmeeeeesbebbaa s e e e e aaeaeanaasaeaaaaaaaeees 232
7.2.1 APPIICALION SEIVEL.......i i ee e s e s seent e eeereereeeaaeeeeeennreneeeeees 232
T.2.2 PIOXY SBIVEI ... ittt ettt ettt e ettt e e ettt s aaaee e st et e e e e et e e e e e et s e e e eebanneeaeees 237
T7.2.3 MURI-TIEE SEIVEIS....ciiieiiie ettt eermt e e st e e e s et e e et e e e e nnneee 238
7.2.4 Deploying @ SEIVEr @S @ SEIVICEuuiiii it i e e eeieieeeeeee e ee et e e e e e seness s e e e e e aaeaeeeaane 239
7.3 NATIVE CLIENT DEPLOYMENT .. iiiiiiiiiieitiititi s seernni s s s e e e e e e e e e eeesssemmeeeeeesssnnnnaeaaeeeeesannnas 239
7.3.1 JavaGram Application BOOLEE...........uuiiiiiie e eieeee e eeaea e 239
7.3.2 AULOMALIC UPQGIadE.......eeiiiiiiiiiiiie ettt ettt e s rme e anbeeas 241
7.4 BROWSERCLIENT DEPLOYMENT ...uuiiiiiiiiiiiititttitie s satestaas s e s e e e aeaeeeeeesannneaeeeeassbasnnnaaeseeesannn 242
7.4.1 HTML EMBDEAAING. ...ciiiiiiiiiiieiitie ettt eeee e e e e e e 242
7.4.2 Flash Security SANADOX..........uueiiiiiiiiiiiieeeie et 244
A T = 1 11110 £ =T OO UURRPPPPPIN 244
7.4.4 Deploying 10 8 WED SEIVEL........ccuuiiiiiii it et 246
7.4.5 Server Deployment with BlazeDS.............oovviiiiiiiecciiiiii e 246
7.5 STANDALONE DEPLOYMENT ...uuuuitieeeeeiettetnnsrstimmmeeeessnrssaaaaaeaeeesetanenasaeeseseeesssnnsnnann s aeesnnnnns 247
7.6 FILE CACHING . ..ettttutu e et e e ee ettt e et eeee e e ettt eae s e e e e e e eeaaa s s e s e eeeeteeeeesnesnn s smmmr b s a s e s e eeaeaeeeennnns 248
7.6.1 Serverside CaChiNg.........ciiiiii i i e eeee s eree e e e e e e e e e ——————————— 248

A I O 11T o1 S o L= O Tod 1 Vo P 248
7.7 JAVAGRAM SERVERMONITOR ...utuiuiieieeeeiiieeieiittienmeeeeetattataasaeeeeeaeeanaasseeaaaaeeeeessnsnnnnnnnssenes 249
771 RUNNING JSM. ..ttt ettt e et e e s st e e e e e mees e ebb e e e e e e aneees 249
T.7.2 SEIVEI TaADS ..ttt e e et e e e anae e e e e e e e e aaaaaeaaaaa 250
QUEST SAMPLE APPLICA TION .oiiiiiie ettt e e e s ee e 256
8.1 INTRODUCTIONcitttettttttui e e e e e eeaaaasaaeaeeeaeeeeeeeaettasa s samsseas i aeaeeeeeaeeeeeeasmnneeeeeeessnnnnnnaaeaeens 256
8.1.1 REQUIFEIMENTS. . .eiiiiiiiiiiiie et reet ettt e e r e et e e e s sttt e e e e e e e e sbbee e e e e e enneee 256
8.1.1.1 ISSUE LIfE CYCIO ..ttt 257
8.1.1.2 ISSUE B . et e 258

o T G T o 11 (0] VA = J PSP UTT TR 259

S F0 O S U = 0 PSP 259
8.1.1.5 AHAChMENT BOL.. ..ottt ettt e e e e e e e a e e e e e e anee 259
8.1.1.6 RUIES BQ....uiiiiiiiiiiiii i s rmmr e e e et e et — b ————tetetetetetatarrarrrrrrrranaeens 260
8.1.2 USEI INLEITACE. ... ettt 260

S0 o A o To 1 0 IRAY T g To [0 T PSP PP PP PPPPPPPPPPPN 260

S T 2 |V - V1 BV T Vo [1 PSSR 261
8.1.2.3 Menubar and TOOIDAL..........ccuiii it ereee e e e e e s e e e e eesreaeaaeeeeannes 262
8.1.2.4 USEr AdMIN Pan@L.......ocoiiiiiiiiiiiii ettt e e e e e rmmme e e e e eeeeas 263
8.1.2.5 USer DEtailS PANEL.......coiiiiiiiiiii et 263
8.1.2.6 ISSUE SEAICH PANEL......ccoiiiiiiiiiii et 264
8.1.2.7 1SSUE DetailS PANEL.........ueeieiiiiiiiii et a e 266
8.1.2.8 GeNerating REPOIS.uiiiiiiiiie ettt ettt e e e e e e e s e bbb e e e snbbreeeaaaeeeaan 268
8.1.2.9 LOG PANEL....eoiiiiiiie ettt 269
8.1.2.10 o S 1) £ - T 1= PP PPRPRRRN 269
8.1.2.11 HEIP PANEL..c e 270

8.2 DESIGN ...ttt ettt ee et oottt e eh e e e e e e ettt ettt b e b mmme e et e be b b e e e e et e e eneneaaaas 270

JavaGram Agile Development

8.21 ODJECE MOEL.... ..ttt et e e e e e e e e e e erae e e e e e e e e aaaaaeeas 270

S 0 I R o 0T /A PEPRP SOt 270
8.2. 1.2 QUESH/QUIL...coeee ittt e et e e e et e e e e e e e e e e e et —t e e e e e e s s aararaaeaate 271

S T I T o U TS 7 o Yo o PO PPPP 272
8.2. 1.4 QUESH/GUIMUSEIL. .. eeeeiie e e i ittt eeeete et e ettt e e e et e e e e e e e s e et e e e e e e smmreeeeeseasantbaaseeaaaeaan 273
8.2.1.5 QUESH/QUIISSURL.......eeeeeeeiiiie et eee ettt et e et e e ettt e e e n e 274
8.2.1.6 QUESH/QUIMMISCL......cieeeeeeiiiiee et eee ettt e e e ettt seme e e e e s e e s s 275
8.2.1.7 QUESH/QUIISELLINGL ... veeeeiiiie ettt e st e e st semmme s e e e anne e e e e 275
8.2.2 DAta MOUEL.......oiieeiiiiiiii i e e e e e e e e e e e e e 276
8.3 IMPLEMENTATION ..tttueitt ettt e ettt e et veeee et eeeta e e ean e e e aan e e s mma e e ann e eeaeeetn e eennsennmesnaerenseeennarenn 276
8.3.1 BUSINESS ODJECLS....ccciiii it e r e e ee e 276
S T Tt S A U LY=o = 1 © S SN PSPRUPP SRR 276
8.3.1.2 ISSUEB BQ..... ittt eaeae et et e e aat e rann——. 280
8.3.1.3 AAChMENT BO.....coiiiiiiieeie et ee et e e e e e e e ee e e e e e 284
8.3.1.4 HISTONY BO ...ttt nneen 287
8.3.1.5 RUIEB BO.. ..ttt e et e e ema et e e et e e e e rbr e e e e anaeeanres 288
e 70 T B o 1= o] [P UROROR OSSR 289

L TR A |V F= 11 I VAV 1 To [1V T SURRN 290
B.3.2. 1 QUESL . ueiiii ittt et et e e e et e e e e e et be e e e et —eanteeaeaatbteeeaataeeesaabrennreeeeane 290
8.3.2.2 APPPANEL. et anae et e e e et e e e anaeeeeannenan 293

LS TR I R A o] o I =TT OO PP ERTT PR 295
8.3.2.4 COMMANGS. .. .ciiieieiiee ettt e e e ettt e e e e e e e et e e e e e e e ataa e eee e s s baa e essesssanseeeessssnsnnnes 298

L TR R T U =Y = g Ao 1 o1 o PR 301
L TR IR 0 R U Y ST T (o o O SUPTR 301
R T T A U LY =T 6ol £ 1= o PP 303
8.3.3.3 PaSSWOITUDIAIOG. ... eveteeiteiee ittt ettt e et e ettt smee b e e e 304
8.3.4 ISSUE MaANAGEIMENT.......ci i ittt e e e e eeaanen e 306
8.3.4.1 ISSUBSEAICKL. iiiiiiti et ettt e e e ettt e e e e e ee e e e e e e e st enm——aa e e e eeetaaaaeereaernnn 306
B.3.4.2 ISSUEBSCIBEIL. ... i eeeeeietiee e e ettt et e e e e e ettt e e e ee e e s s banmesta e aeeesesaataneessssbannsstansaeesesssnnnnseesessrnnns 309
8.3.4.3 ASSIGNDIAIOQ. ... eeeeiiiiiee ittt e eana e et e e e anre e e nnnes 319
8.3.4.4 RESOIVEDIAIOM. ... eeieiiiiiie ittt ettt et e e e et e ettt e e e nraeeeaanbeeeeean 320
R BT S (=] 1= Tod (I - 1 o SRS 321

S J0C 78TO = 1 1] o SR 322
8.3.5.1 PUCKLISIPANEL......ccoeiiieeeeeeeeeeeeeeeeeee e 322
8.3.5.2 LOGPANEL. ..ttt sne e e e amn e 323
8.3.6 MISCEIIANEOUS.......coiiiiiieeeee et reee e e e e e e e e et s e e e e s mmmr e e e e earanes 324
8.3.6.1 ADOULDIAIOG .. ettt ettt ekttt eamn et e e e et ean 324
8.3.6.2 HIMIPANEL.. ..ot e e et e e ere e e e e e e e e e e e e e e a e ennea s 324

S TG TR A O o 1T 8 = L1 o] o O 324
9 G I = N ST []\ 1 TP 326
L 20 R 1V 2T 1 o 1 T] N S 326
L IR I R -1 £ = TR I == 326
L T Y/ o 1< S PSP PSPPPPT 328
LS R R @ o1 o £ T PP PPPPPPT 329
L IR S [O 330
Lo IR T =t 0NV T 0] o100 (= o | A 330
9.2 WRITING A GUI EXTENSION.....cuuiiiiieeitiee et eee e et e e e e e e e emmt e e e e e et e e e et e e e s eeeeeerans 330
LS B R U 7 To PO PPTRTPPPR 331
Lo I \\F= Va1 0T B @0 0 V7= 1 110 o 1= S 332
Lo JZC T [41 0] 1= 0 0 =T = L1 [o 332
9.3 WRITING A TEXT EXTENSION. .. cctuiiiteiiteeeet e e eimeie e et ee et e e et e e e at e aemmean e e ann e et eaetnsaesnnaaeeeen 336
9.4 WRITING AN AD-HOC EXTENSION.uuiiiitiiiiieeiiie e et e e et e e e e e e et e eeaae e eenmeteesaneeean e esnneeesnann 338
0.5 PACKAGING YOUR EXTENSIONiiuuiitiitieitietteettiiemntetteetesstesnessnsssimenssesnessnsesneesnersnsesnnnes 340
10 CORE REFERENCEot et ee et e e e e eaan 341
10.1 L0011 =1 N 341
10.2 I ENTIF E R S 1 e ttttt ittt e ettt et e e e et e et e e et e st e e e sa s temaa s aneesnssaseanaetnsssnaanmsasesnsstneenneeteennns 341

Content 7

10.2.1 RESEIVEU WOIAS. ...ttt e e ee et e e e e sae s s et e e s aaseneeasaneees 341

10.2.2 (@ TN = 111 To%= 1T o PP UUURPPPPP 342
10.2.3 N E= o] To T 0] NVZ=T 0 i o] o =P 342
10.3 JAG ELEMENT ...iiiiiieeiitit e eeee et e e e e e e e et et e e e e e ee et e e e e e nnn s 343
10.3.1 Jag Element ProPerti€S.......uuuuuiiiiiiiiiiii e cceeiiiieteee ettt e e e e e e e e e e e e e e e e e s a e ne 343
104 L OAD ELEMENT 1uuiitettii e ettt e e e et emmeeta s e e ettt s e e e ettt s s eaneeeeeeba s e e e e ebb e e e e es b s e e e eeban s eeaeees 344
10.4.1 Load Element ProPerti@s........cccccuuuuririrererieeeiiirerineneerereeeeseesssessssssssrerreesaeaaeaeenes 345
10.4.2 D F= 1= R Y/ 012 PP PPPPPTTR 345
O S Y AN (o] ¢ [T Y/ o =T TSP EPPRRROY 346
10.4.2.2 COMPOSILE TYPES .. eeiiiiiitiee ettt e e rcer et e e ettt e et e e s e e et e e s e e e e s s re e e e s e e e nreeesannreeenaa 346
10.4.2.3 USEFAEMINEA TYPES . iiiiiiiiiiiiiiie ettt ettt e e st e e s e srmme e s s e e e 347
O S N = 1Y T I/ o1 TSP EPRT S 347
10.4.2.5 VAU TYPE. .. eeiiieiiiieee oot e e ettt e eeees e e e e e e e e s e e e e eenn e e e e e e e e e e enrnnne s 347
O S TV Lo (o I Y/ o PP PRSPPI 347
10.4.2.7 IMPUCIE TYPE CASL.uuiiiiieeiiiiiitiiiie ettt e e e e ermme e e e e e e et e e e e e e e s e e rnnee e s s e ennneraees 347
10.4.2.8 EXPHCIt TYPE CaSt.iiiiiiiiiiiiiiiiiiiit ettt e e e e e et e e e e e e s e e rnnee e e e e enaeraees 348
L1O.5 LITERALS .ottt ettt ettt e e e e et e et me e e e e e e e et e et s e e e e e s e s e es 348
1051 F N (o o ¢ 1o I (=] = 1P PR U PRSPPI 348
10.5.1.1 BOOICAN LItEIAIS.......eeiiiiiiiiiieitiie ettt sme et 348
10.5.1.2 Charachr LILEIAIS........coiiiieiie et eeeet ettt e rme e 349

O TR O T [) =To T= g IR =T S SRR 349
10.5. 1.4 REAILILEIAIS. .. .oeiiiiieii ettt ettt e et s 349
10.5.1.5 SHING LILEIAIS.eeeiiiiiiie ittt e et me et e e e e e s nnes 350
10.5.1.6 SYMDOI LItEIAIS.coiiiiiiiiiiiieie et ettt na e e e e 350
10.5.1.7 DAl LILEIAIS. .. .eeiiiieieee ettt ettt ettt e e e et e s 350
10.5.1.8 BINAIY LItEraAlS.....coueiieeiiiiie ettt sttt e et e e e ent e eeme e st e e e e nnneeee s 351
10.5.1.9 XML LItEIAIS ..eeeiiiiiiiieitit ettt ener et e 351
10.5.2 COMPOSILE LILETAIS. ...ciei it et e 351
10.5.2.1 VECHOT LITEIAIS.....cueeiiitiiitiee sttt ettt 351
10.5.2.2 LISt LItEIaAIS. .. eeiiiiieeiiie ittt ettt 352
10.5.2.3 MAP LILEIAIS ... eeeiie ettt ettt et e ettt e et e e e e ettt e e e e e e e nnneeee s 352
10.5.2.4 ODJECE LIEIAIS....ceiiiiiiie it ettt b et e s e e ee s 353
L10.6 EXPRESSIONS....uutttttttiitiiiiiiitiesierntireseie ittt e it e e ae e e e e e st st et et s et e e e e e e e s s e s s s s s imnne e s e s e e e e s s s e s s aaes 354
10.6.1 UNAIY OPEIALOIS. . ..ieiviiiieiiiiiie e ettt e e et e e et s e aaeneseest s e e e esb s e e s eeba e eeeees 354
O 700 O e @ o 1T - o PRSP UPPRRR 354
O T B O o 1= =1 (o] A PP TP PPPPUPPRRI 354
O T B B o @ o 1= =1 (o (PP PR PPPR 354
O T e O o [T £ 1 (o] (A PP TP PPPPUPPRRR 354
10.6.1.5 O] o1 = 1o S PP P PP PP PP PP PPPRPRPRPP 355

O G T G O o 1= = (o] SO PP PPPPPPPPPPPPPPOE 355
10.6.1.7 TYPEOT() OPEIALOL.....cciiiiiiiiiiieiee ettt ettt e e e e e e s s rnnee e e s nnenee s 355
10.6.1.8 ValUEOF() OPEIALOL.eeeieeeieeee e eeeee ettt e e e e e e e e e e e e ab b e s eeaesebeeeeeeeeeeas 355
10.6.1.9 ArQ() OPEIALOL.....ccititeeiiiiie e ettt eeet ettt e ettt eeame e s st e e e e s b e e s sn bt s eeme e s nre e e e s nnneeee s 356
10.6.2 TP Ty A @] o1=T = (0] £ 356
10.6.2.1 = AN @7 OPEIAIOIS. ...eeiiiuieieeiiitieeeerieert e e e st e et e s siee et e e e e abb et e e snrr e e e e e nestreeesannees 356
10.6.2.2 4 @NU += OPEIALOLS. .uueteiiieeeeesiiitieeeireetteeeeteeeeseaaatbreeeeeaeeaseeaaaeeesaasnebeeeeeaessannteeaesesannses 357
10.6.2.3 T @NAT = OPEIALOISeeieiitiiie it e e seeet et e e sttt e e st e e e eeab e e s asbe e e e s anb e e e s asbenesneeeesnreeens 358
10.6.2.4 * ANA *= OPEIALOIS....eeeeiitieeeiiieie e reeet et e e ettt e ettt e e st eeat et e e s asb e e e e s ab bt e e e benesreeeesnreeens 359
10.6.2.5 @NA /7 OPBIALOLScitiiieiiiiititi ettt ettt e e e e e e ettt e e eeat e e e e e e e s e e b aeb e et eeeeeeammteeeeeeaannneneeees 359
10.6.2.6 % AN Y07 OPEIAIOLS.uiueeieiiieeee e eeeee ettt e e e e e s et e e e bbe e e e e e e e e e e e e nbbe e e aneneereeeas 359
10.6.2.7 Equality (==, ?=, 1=, ===, 125) OPEIalOrS....cceiiiiiiiiiiiiieiieeeeie et e e 359
10.6.2.8 Relational (<, <=, >, STDPEIALOIS.....coii ittt ee e e 360
10.6.2.9 Logical (&&, ||) OPEIALOIS......cceiiiiiieiiiiiieesieeeiie ettt eeatr e e et e e e eeenees 360
10.6.2.10 Bitwise (&, &=, |, [F, 7, /=) OPEIAtOLS .. .uueiiieieeiiiiiiiiiiieeeiieereeeeeesseirirreeesaseeseereeaeeessnnnes 360
10.6.2.11 Bitwise Shift (<<, <<=, >3, >>=) OPEIALOLS.....ccviuviieeiiitieeeeieeriiee et e st 361
10.6.2.12 List/vector/map aCCESS OPEIALOL.......ccciiuurieeiitiiieetesritreee e sttt e s st e eene e s stbreeesnneneeesnnnees 361
10.6.2.13 Object access (. and ?.) OPErAIOIS.......coiiuuriiiiiirieeree e et e et e et reet e e e e aineee s e 361
10.6.2.14 @ OPEIALOL....c e ettt e e e et et e e e ettt et e e e e e e s e ameee e e e s e baeae e e e e e e e e s e sbnaaesaanbbbbreeeeaeeeeaanne 362
10.6.2.15 INSEANCEOT OPEIALOL. .. .eeeiieeeeiiiiiiitieieeetteeiee e e e e e ettt e e eeers et e e e e e e s aanbbebeeeeaaessameeeeeeaaannes 363
10.6.3 TEINAIY OPEIALIOIS. ...ttt eeeee bbb e e et e e e aeeer e e e et e et e e e e eeeeeesammmeeeees 363

JavaGram Agile Development

10.6.3.1 CoNditioNal EXPIrESSIONS.ccciiiiiiiirietee e e ceemee e e e e e e ettt e e e e e e s esmnae e e s s ssssatbaereaaeeessesmneessannes 363

10.6.3.2 Asynchronous Method INVOCALION..........cciiiiiiiiiiiiieeeiiiei e e ee e e e e e e e e e anees 363
10.6.4 N-BIY OPBIAIOIS. ..ttt rre s 365
10.6.4.1 VECIOr OPEIALAL........eiiiiiiiiiiiieiiiiieeee e e e e et ettt ettt reer e e e e e e e e e e e e e e aaaaeaaaeteaaas s s e e e aeaaaeaeaeas 365
10.6.4.2 LISt OPEIAIOL......cci i iiiiiietee e e e e e eeeee e e e ettt e e e e e e e e e e e s e et eeeeaeeeeseasabsbaeantbsareeeaeeesaaaannes 365
10.6.4.3 Y T @] 1= = 1o APPSO OO PP PPPPPPPPPPRPPPPPIN 365
10.6.4.4 N T @ o [=T = (o AP TT RO PPRR 366
10.6.4.5 ODJECIOPEIALON.ceeiiuiiiieiitiiee e iee ettt et e et e e s e e e e e e st et e e st et e e sneenaneeeeaannneeenanes 366
10.6.5 Operator PreCEAENCE.ooi i cceeee e e e es s re s e e e eeeeeenees 367
10.6.6 D= =T IS o T U 367
10.6.7 MEthOd INVOCALION.........uviiiiiei ittt e e s 368
O T Y 7.y = V1= T PP 368
10.7.1 EXPression StatemMeNL...........uuuiiiiiiieirieeeiiiierieere e e e e e e e e e s seeerrrreererrrereaeaeeeeeeessnanes 368
10.7.2 BIOCKS . .ttt aaaaaaaas 368
10.7.3 I STALEIMENL ...ttt e 369
10.7.4 LT 11 (S e T o OO TP PR OPPPRPPPPON 369
10.7.5 [T I oo o PP PP PP PPTPPPPPP 370
10.7.6 o o o To T TP PUTPTPPTT 370
10.7.7 (o] T 1 o To] PP T TP PPPPPPPP 371
10.7.8 Break STatemMeNL.cooviiiiiiii e 371
10.7.9 CoNtINUE STATEIMENT. ...ttt et eeee bbb e e eeeeeeeeereee 371
10.7.10 REtUIN STAtEMENT......coeiiiiiiii e e e e e e s e e e e e e e e e eneeeeeeeeeas 372
10.7.11 SWItCh SEAIEMENL... ..ottt e e et eeeeaebe bbb e e e e e e e e e e e e eeenseneeeees 372
10.7.12 THIOW SEAEIMENL... ..ottt e e ettt e e e eeat bbb bbb e e e e e e et e e e e e e eeensrnneeees 373
10.7.13 TrY SEAEMENT.....iiiiiiiiiiiiiiii et e e e e e e nee e e e e e 373
10.7.14 Synchronized STAateMENT...........cooiiiiiiiiiieeri e 374
10.7.15 QUENY STAIEMENT....ceiiiiiiiiiiiee e er e 374
10.7.16 Transaction StAteMENT.........cccoeiiiiiiiiiiicce e eree s eee s 375
10.7.17 ASSEIT STAEIMEINL. ...eeieiiie it eree e e e e e e e e e eeeeteb b s mameeseenanan 375
L0.8 CLASSES . iiiiiiiiiiitui e e et e e e eeeea e e e e e e et e et ettt bbb — e b et e e e e e e e et e ettt enaeeeeeeeeaebrab e e e e e aaaan 375
10.8.1 ClasS QUATITIEIS. ... eeee e e e e e e e eenn e e e e e 376
10.8.2 (O = TSI o o] =3 1= S 377
10.8.3 = o £ 377
10.8.3.1 (1= [0 IO T = 11T £SO PPEPUTRN 377
10.8.3.2 Field INItIaliZAtION........ooi i e e e e e nnee e 378
10.84 YT T T 3 378
10.8.4.1 MEthOd QUALITIEIS.ceee ettt e e e e e e mnee e e neeeeeeeas 379
10.8.4.2 (070 01511 U To1 (o] £ OO PP PP PPPPPPPPPRPRPIRE 380
10.8.4.3 INVOKING MELNOGS.coiiiiiiiiiieiii et enee e 380
10.8.4.4 L1 381
10.8.4.5 Default ArQUMENTSt eeceee ettt e e e e e e e e e e e e ab b b e s eeaestbeeeeeeeeeeas 381
10.8.4.6 Variable Number of AFQUMENLS..........uuiiiiiiiiiii et e e e e e e e 381
10.8.4.7 Method OVErlOAINGuveieeiiiiie et ettt s 382
10.8.4.8 TYPE CRECKING......itiieeiiiie ettt e e ee s 382
10.8.4.9 REMOLE METNOUS. e e e e e et eretb e e e e e e e ennen 382
10.8.4.10 Targeted REMOLE CallS........ccciiiiiiiiiii ettt 384
10.8.4.11 LOCAI MENOGS.coiiiieieeiee ettt ettt e e e e e e e e e e e e e e e an 384
10.8.5 1] 1= 1 = g o PR 385
10.8.5.1 ADSHACt MEINOUSeiiiiiiiieei ittt e e e e e s e e e eeeb e e e e e e e e e e nnee 385
10.8.5.2 POIYMOIPRISIML.....eiiiiiiiiiii ettt e e e e et e e e e e eeeas 386
B0.8.5.3 SUP Bt et e e e e eeRe ettt ettt ettt e e e e s e b e n e b e e eaeeeas 386
10.8.5.4 MULUAI CIASSES. ...ttt ettt ettt e e e e e e s b e e e anbe s e eeeaaeeaean 386
10.8.5.5 Subclass CoNSIIUCIOr RUIES............coouuiiiiiiieeeiiiiee e e e e e e 387
10.8.6 TEXEMEMDELS.ot e e e e e e e e e e aaeeeaeeaaaaaaees 388
10.8.6.1 TEXE PrOPEITIES . ..citteieeiiiiie ettt ettt et e e e e s s st eeeme e s nbe e e e s e ee s 389
10.8.6.2 TexXt QUAITICALION.......uveiiiiiiiee ettt eenmne s 389
10.8.7 (0 1Y =T 0 0] 1= PR 390
10.8.8 Static Initialization BIOCKS............uuiiiiiiiiiici e 390

Content 9

10.8.9 ST o] (5] (0] g IO F= TS =L PP PPPPSPPRP 390
10.8.10 REMOLE ClASSES.....uuiiitiiieii et eeeet ettt e et e e e re e s st e e st s esbasssaan s semnta e sananan 391
10.9 (@] = = T N TN 392
J1O.10 THE SYS PSEUDOCLASS ...uiietiiett ettt eeett e eeemta e e st e e et e e saa e s et sraee e et s eaanssetaessetssessnnnneseen 393
000 I R VO N 11] o 11 (= SRR 393
10.10.2 SYS MELNOAS....cceiiiiieieee e eree e e e 395
10.10.2.1 Parsing and EVAIUALION..........ccccuriiiiiiiieiee ettt eeme e e s emee e 395
10.10.2.2 File HANAING. ...ttt e e ettt e e e e e e e et e e enanntbeeeeaeaaeeaaannnees 396
10.10.2.3 INPUYOULPUL.eeiiiieee ettt ettt et e e e e ettt et e e e e eeame e e e e e e e e nnebeeeeeeeaeesammmeaeeeeanntbeeeaaaaeean 400
10.10.2.4 DEDUGGING. .- tttettetaaeteaiiiteeeeieeetieeeeaeeeeeaaaateeeeeeeeeeaseeeaaaaesaaanntbseeeeeaeaaaaseeeeeesaaannsasseeeeaaessd 401
10.10.2.5 String HandliNg.........ovvviiiiiiiiiiieeeiciiieee et seesiinve e e e e e e snnnneeseeeernnnneeee e e s e s 402
O 0 I S T O [1= 0 Y=Y V=T S PRPRRTRRRPPPRS 407

0 T O T2 A Y/ = ¢ 3SR 413

O T O T2 S T I T | (YT 415
10.10.2.9 COlBCLONS.......cetieieeeeeeee e ettt et e e e eeeee e e e et e e e e s e ea e e eeaeeeeeessaanseeeresnaannans 416
10.10.2.10 MISCEIIANEOUS.ttt e e e et e e e e e e ea e e e e e e e sammmessaneeeeeesaand 419

N R 1 1 I = o = N [424
11.1 LYY = Y 424
11.1.1 Element QUAIITIEIS.........uuueiiii e 425
11.1.2 Element IAENUTIEIS.o e e e et e s e s eenmanes 425
11.1.3 Element PrOPerti@S........uueiiiiiiiiii ittt 426
11.1.3.1 V=T F= VgL | 1= Y 2, o |
11.1.3.2 D= (= 1Y (oo [T 427
11.1.4 ST 11 [T od F= (ST 428
11.2 I Y = = = Y 428
11.2.1 PN 1Y = (ot A = 1] 0 1 1= 01T 428
11.2.2 APPICAtION EIBMENLS.ciiiiiiiiii e 432
11.2.3 VA AT Lo [0)TV = (=T 4 =T 0 433
1124 LaYOUL EIEMENTS......ciiiiiiiiiiiie e iee ettt et me e 436
11.2.5 (000 0] F=1 (=Tl = (=12 0[] 0L TR 438
11.26 Menu HeM EIBMENLS......c.uiiiieeei et rermte e e e s e sen e 442
11.2.7 Decorative ElEMENLS........c.uiiiiiiiieiee e . A4 3
11.2.8 =T (o I 1= 0 [T L T 444
11.2.9 Y1 [STe 1o T = 1= g = £ N 446
11.2.10 BULON EIBMENES.....ccuniiii et e e e e e e e e s s e emea e eaass 449
11.2.11 Feedback BIBMENIS......ccouniiii et eeeer e e e et e e s e ees 449
11.2.12 Ar€a EIBMENLS.ttt eeeer e e e e n s e s rmneseennnn e AD0
11.2.13 Tre@ ElBMENTS..ccoe ettt eeeer e e e e s s e saineesrmneseennnnennn . 4D0

8 O S = o] (SN = 1= g 1< 1 €O 452
11.2.15 Grid ElEMENES. . .ccveieii ettt e seeeer e e e e st s e saieeesrmneseennnnenn . ADD
11.2.16 Graph EIEMENTSciiiiiiiiei e e 459
11.2.17 Gadget EIEBMENTS......cuiiiiieei et 468
11.2.18 Map EIEMENES.......ooviiiiiii i eceeeic e e e e e s e nnsannneeeeeeennnn 409
11.2.19 Jade EIEMENLS.......oiiiiiie et eeeer e s e s e v ennn e BT 2
11.2.20 REfEreNCE EIMENTS......uu i e e er e e e e s e e et e e s e e ees 473
11.2.21 INVISIDIE BIBMENTS......iiee et e e e e e eaee s eaaas 474
11.3 THE GUI PSEUD O CLASS ..ottt eeeet ettt et et e et e e s s e s et s e ea e sa e eeb s esaessn s snnnaesnnns 476
11.3.1 (U AN 11] 0 10 | (=TT ¥/ o
11.3.2 CTUTI Y =] {0 o E O 476
12 SQL REFERENCE ittt e et e e e e e e et eeeee e e e e e e e e e e ae bbbt s e s emenaaseeeeeaeaeeeened 482
12.1 QUERY AND TRANSACTION STATEMENTS .. .ciieeeeeieeeeeeeernennnnmmmeensnnnnaneeeseeeeereeesenmneeeeeeeeeees 482
12.2 IVIARKURP . ..ttt ettt et et et et eee et e e e et e et e et e et e s b ee st s ea e et e ea e et eesssnmnnseaneetsesnnesnsennnesnnsnnnd 482
12.2.1 =] (o I I = Vg] F= 1 o o TR 482
12.2.2 B2 (o | PP T TP UUPUUPUUPPRURRY. 124
12.2.3 TEXESOLQUETY . meee e e e 483
10 JavaGram Agile Development

12.2.4 L= o | U] oo F= L1 =P PP U PP TP PP UPPPRRRPPOY A84

12.25 RS o W o (=] o= OO PRTTTPOE 484
12.2.6 TeXt.SOL.CAllabIE..........coo e e reen e 484
12.2.7 Element Properti@S........oooii oo eeee s e e e e e e e enennnnne 485
12.2.8 Capability SUMMALY.........cuuiiiiiiiiieiieccccciiieire e e e vmmre e s e e e e e e e nseneeee . 486
12.3 DATABASE CONNECTIONCONFIGURATION.....ctttttttttteaaeeaaiaainamteeteeeeaaessasaasannnninneeeesesaee s 487
12,4 THE SQL PSEUDOCLASScitttiiaeeeiiee i tmee e ettt e e e s s bbb e e e e e e e eaannnnnnes 488
12.5 BUSINESSOBIECTIMANAGER......ccitiiiiiiuuuitttttetieeea s aaaasbbb b b s b e e ee e e e anaassbebbsnbeeeeeeeeeeeeeeeseennd 495
12.6 THEBOM PSEUDOCLASS.......utttiiiiiei ettt ettt ettt e e e e e e e e e e e eeeesbebmnmeeeees 497
13 LIBRARY REFERENCEottttiiiiiiiiiiiiii ettt et e e e e e e e e e e e e s s mnne e e e e e e e 500
R TR R N1 Y PP PPRRPRR 500
L1302 LIB/SVR ettt et e bbbttt et et aaaaa b b et b et be ittt eeeeaaeeeaeeeean 502
R TG T 1N 1 PP PPRSRRR 503
R TR S N 1= LT PSP ROPPPPRPPSPPR 504
L35 LIB/BOM/ ittt ettt et ettt ettt et ettt e e e et e e e e samne e e e tbee e e e e e e anbbeeeeeeeane 511
G T 1= LT 513
14 JADE T JAVAGRAM IDE ...ttt ettt et e et e e e e e e e e e e s smmeeaeeeaeas 514
141 OVERVIEW ...ttt eeeee e e e e e e et e et ee ettt se e s e e e e e e e et eees s memeeeeeesebebnnn e aeeeeeeas 514
I 0 N | = o 5 T PP RUPPPUPPPPPPPTN: 515
1421 ProjeCt OPEratiONS.uvveiiieiiiiii et ettt e e e bbb e e eeenee e 515
14.2.2 L (0] =Tot B I £ PR PP STPPPI 516
14.2.3 OULIING TrB... ittt e e s e e e e eaeseeeneaeeeaeaaeeenns 518
14.2.4 PrOJECE PrOPEITIES .. .ceiiiiiiiiiiiie e eite ettt e e e ee e e 519
14.25 PrOJECE STALISTICS. .. ee it ieteieee e ettt ettt eeee e e e e 523
14.2.6 BUIIAING @ PIOJECT......ciiiiiiiiiiiie et 523
R S |) PSP PP PP PP 524
14.3.1 L 1L @ 01T = 11 0] o U 525
14.3.2 Lo 1] To @ 0 T=T = 11 0] o PP 527
14.3.3 (@0 L= 10 1] T | ¥ PSRRI 529
14.3.4 Reformatting @ File......coovieiieii e aeeee s 530
14.35 Viewing @ SCrptin HTML ...ooooiiiii et 531
14.4 SEARCHING AND REFACTORING.ceeeeeiiieeeiitiitutnsaeetntaaeaeeeaeaaeeeeeestnnneeeeeeeensennnaaeaeaeens 531
1441 SeArChING @ FIlE ... it 531
14.4.2 SeArChiNg @ PrOJECL.......uiiiiiiiiiiiiee ettt eeme e 532
14.4.3 L= =T (o]] o o AR URPUPPPPPR 533
L1455 RUNNING. .. ctttttie ettt e ettt e e ettt e e e et et s e e e eeentee bt e et ee b e e e eeta s saanseeeeeban e eeeebaneeeeesanan 533
L14.6 DEBUGGINGuuuuia et eeaeateteeete b eemeeeeeee bttt a e e e e e eeeaaaeasaeaaeaaeteeeeebabaas s sms b s e e e eeeeeaeeenes 534
I A o 1o = TP PPPPPPPRR 537
14.7.1 IMPOItJAVA CIASSES.....ciiiiieeeieieieeeeiet et e e e e e e et eeeee e e e e e et e e e et e eeenaean 537
14.7.2 PrEIEIENCES. ...ttt 539
15 JAVAGRAM SYNTAX ittt eeete ettt ettt e e e e e e e e e e e s s st et e e e e e e e e e e e e e e s e e e s ennneaeaeeaaeea s 543
15,1 CONVENTIONS. .. . iiieeietiitttttttut i amre e s e e e e e e e et eeesemeneeeteeeeebebabn s e s e e e e amaaaaeseeeeeeeesennnnnns 543
15.2 JAGPRODUCTIONRULESccitiiiiiiiiitiiie e e eeee s e e e e e e e e e e e e ettt oo eees et a e e e e e e e aaeeeeeaaeeens 543
15.3 JTPPRODUCTIONRULES.iiittiieieieieieiieitecme ettt s s e e e e e e e e e aeeeeeseeeeeeeeeeeeestnnnnn e e eeensnnnnns 553

Content 11

1 Introduction

JavaGram is aew technology specifically desiga to support agile developmemis a

| anguage, I t s har eissyntaxg platforno ihdepkradeneepstrong tgpat ur e s
checking, object orientatiprand garbage collection but also oférs capabilities that

make it a much easko-use and productive platform, such as declarative programming,
automatic remoting, asynchronous method invocation, and dynamic loading.

JawaGram enables you to deplaystandalone or multier clientserver aplication from

a single code basallowing you to run your client in an Internet browser as well as a
native desktop applicationlt manages the underlying complexities of distributed
applications for you so that you can focus on what matters most:nraptang business
functionality. Furthermore, time consuming activities such as application maintenance
and patching are significantly simplified through a sewamtric release process that
automaticallyupdates all dependent deployment points.

The techology is simple and easy to leagret the benefits are overwhelmingip toan
order of magnitude gaim productivity and robustness when compared to conventional
technologies.

1.1 Background

There has been growing interest in recent years in agile softleastdopment methods.
The shortcomings of traditional, waterfall methods have been known for at least three
decades, namely:

1 The requirements for a complex system can rarely be specified fully and accurately in
advance.

1 Despite tight quality control, the taut of each phase will contain gaps or flaws that
wonoét be discovered until a | ater phase.

1 User requirements will evolve during the course of a long project, thus making the
endresult inconsistent with the latest requirements.

1 The cost of fixing a requement or design defect discovered later in the project is
substantial.

1 Given that a working system is not available until late in the project, there is little
opportunity for user participation and feedback; this increases the risk of the system
not beingaccepted by the users.

1 These challenges often cause schedule delays and budget blowouts.

The agile approach attempts to address these difficulties by promoting a more iterative
lifecycle, where emphasis is on prototyping, user participation, having angaystem

12 JavaGram Agile Development

all along, and less documentation. The approach is best summarized by the agile
manifesto \www.agilemanifesto.o)gwhich places more value on:

1 individuals and interactions over processes and tools,
1 working software over comprehensive documeindat,
1 customer collaborationover contract negotiation, and

1 responding to changeover following a plan.

Successful adoption of the agile approach requires the overcoming of cultural, process,

and practice barriers. Although these challenges are primanilyechnological, the use

of suitable technology can be of substantial benefit. The reality is that most technologies
available today are not particularly wsllited to the agile approach, typically because

they either predat sdyhamies. 6agi l e agebd or ignor

JavaGram has been specifically designed to support the dynamics of agile development.

Its conception is the result afver ten years of experience gained from successfully
practicing RAD and agile i n c omtchnologya l soft
designed by a practitioner for practitioners.

1.1.1 Agility Criteria

So what makes a technology more suited to agile development than others? The answer
to this question lies in the dynamics of practicing agile inliaprojects.

Agile reliesheavily on iterative development. The first priority in a project is to produce

a working prototype of a proposed system and then to use this as a vehicle for eliciting
detailed user requirements. As requirements emerge, these are used to furtherdefine an
enhance the prototype. Enhancements are done as a series of mini development cycles
where during each cycle we design, code, and test the next increment, and invite users to
evaluate the outcome.

The cyclic and iterative nature of agile places greatr&sig on going from requirements

to working software rapidly. Speed is of the essence; otherwise cycles become slow and
ineffective. Rapid delivery of the next cycle ensures that users will remain engaged and

the project will not lose momentum. At the samé me , ités iIimportant to
team small to avoid communication overheads and to minimize the need for detailed
documentation, both of which will slow things down.

In order to speed up each cycle, we must not only have the means to desapdend
business functionality quickly, but also to rapidly turnaround defects raised during the
testing phase. When this is not the case, testing can become hopelessly inefficient, as
testers will spend most of their time waiting for critical fixes withoutioh further
testing cané6t take pl ace.

Equally important is the cross cycle speed. If each subsequent cycle takes longer than the
previous one due to developers finding it difficult to add new functionality then

Introduction 13

momentum will be lost and eventually grind a halt. It is therefore vital that the
application under development lends itself to alteration and evolution. While this is
primarily influenced by the quality and foresight of the original design, the underlying
technology can go a long way in pronmgtigood practices that avoid design inflexibility.

Finally, agile is all about simplicity. Simplicity is achieved by untangling complexity so

that the essenti al i s separated from the acc
the least complicateway of getting there has the potential to deliver the best outcome.

Without constant awareness of this, IT professionals have a tendency to be dazzled by
technological complexity and run the risk of osgineering their solutions.

1.1.2 Barriers to Rapid Development

In order to design a language that facilitates speedy development, we must consider the
things that slow down developers; namely:

1 Language complexity The more complex a language is, the steeper its learning
curve will be. Contrary to the popularpi ni on t hat a |l anguageobs
function of its number of features and con
programmer too many different ways of doing the same thing. Too much choice
leaves the programmer in a situation wh#érey have to constantly think about
choosing the best approach, and this will slow down development. JavaGram avoids
this pitfall by not attempting to be a totally versatile and general purpose
programming language. For example, JavaGram offers only thredanawntgpesi
lists, vectors, and mapseach of which has only one implementation. So when the
programmer sees the need for a container, no time is lost on deciding which one to
use.

1 Plumbing overhead More than 50% of code in a typical application terabé of
Opl umbingd natur e. This is code that does
performs essential housekeeping. For example, data entered by the user into a screen
typically needs to be extracted, validated, stored in a suitable data struaftnesl dby
the programmer, transmitted from the client to the server using a message defined by
the programmer, unwrapped on the sewside, processed by interacting with a
database, and so on. Typically, such data goes through a number of transformations
where itds changed from one format to anot
acted upon. JavaGram greatly reduces the need for plumbing code by performing
such tasks behind the scene without the programmer having to worry about them.
This saveshe programmer much valuable time, enablingm to focus on actual
business functionality. Interestingly, because a lot of unnecessary transformation is
avoided, the entb-end process executes faster, thus also saving computational
resources.

1 Procedural clutter. Most languages (including Java) require the programmer to think
procedurally. While this works well in some situations (e.g., implementing
transactions), it hinders tasks that are better suited to a declarative style. GUI
programming is one sudhsk. Because GUIs are visual and typically hierarchical, a
declarative notation can be far more expressive and convenient for implementing

14 JavaGram Agile Development

them. JavaGram adopts this style by allowing the programmer to define GUIs using a
markup notation. This not onlyselts in a lot less code, it also greatly enhances the
readability of the code, to the extent that the GUI can be easily visualized by simply
observing the code.

1 Static composition Most languages take a static view of the components that
comprise a progra and require all the referred components to be in place before the
program can be executed. Because of the incremental nature of agile, this is a major
inconvenience which forces the programmer to define placeholders and stubs to work
around the issue. v@Gram overcomes this problem by allowing the programmer to
dynamically load scripts. For example, if the action of a push button is defined by a
dynamicallyloaded script, the programmer will be able to run the program even if
this script is not definedras incomplete and has compilation errors. These errors will
not surface unless the user actually pushes the button.

1 Complex object model In objectoriented programming, business objects can be a
source of substantial complexity. Most of this complexgyin the underlying
implementation of the business objects (e.g., persistence). However, from an agile
devel opment viewpoint, itds not the i mpl em
functionality offered by the object. JavaGram reduces this contylbyioffering a
straightforward implementation model based on a generic object which hides much of
the underlying complexity. By sutlassing the generic business object class and
using declarative schemas, the programmer can do away witkcoinseiming ad
error-prone activities such as implementing object persistence.

1.1.3 Barriers to Rapid Testing

The key to an effective and fast testing cycle is the ability to turnaround defects quickly.
The usual pattern in system testing is that a tester runs a nunibst cdses and records
observed defects. Some of these defects become showstoppers, preventing the tester from
progressing any further. At this point the tester will need to wait until enough defects
have been fixed and a new release produced so thagteati continue.

The main barrier to quickly delivering a test release is a slow build process. JavaGram
addresses this by eliminating the need to produce an actual build. A release can simply
consist of the correct versions of the scripts that comprsapplication, extracted from

a version control system and placed a test application server. Compilation is not
required, as the application server will incrementally compile the scripts on demand. This
means that even a large application can be r&te@sminutes.

Even better, for the majority of fixes, a complete release is not required. Developers can

choose to release only the few affected scripts that fix the outstanding defects. JavaGram

even allows an application to be hot fixed without resigrthe server. Experience has

shown that critical defects can be turned a
thus enabling testers to continue their work with minimal disruption. Similar benefits are

gained in production support.

Introduction 15

1.1.4 Barriers to Rapid Evolution

A live application is best regarded as an evolving entity. The more the application is used,

the more users will demand fromiitactive use leads to rapid evolution. When a new
application is designed, hetutue dembnasotgatwilli mp os s i
be placed on it. At any point in time, 1t0s
to be demanded in the near to medium term. Future (and especially unforeseen) demand

is likely to stretch the application designdsn e xt ent t hat coul dndét ha

Long term therefore, the malleability of the design becomestiaal issue. A design

t h @ mob accommodative of change will eventually break and disrupt the evolution
process. So how can a design be maddeatale? There are two competing views on this
subject.

The first view argues that considerable flexibility should be built into the design from the
beginning to make it future proof. This is intellectually appealing but in practice rarely
successful. Th@roblem with this approach is that devising extensive design flexibility
can be very costly and invariably leads to design complexity, both of which go against
the agile principles. Experience indicates that, in the long run, very few of such expensive
flexibilities actually getised and the rest become a liability.

The second view argues for simplicity. By keeping a design as simple as possible, we not
only shorten the constructiophase we also make it easier for future developers to
understand its makap. The latter is far more valuable than some appreciate. Most
practitioners would testify that the biggest hurdle in tweaking a design is to first
understand it. Once this is achieved, only a bit of developer creativity is required to work
out a way of acommodating something new.

JavaGram adheres to the simplicity view. The language helps the developer to express
things succinctly and with minimum clutter. Reduced plumbing code means that the vast
majority of code actually represents business functityndlhis facilitates understanding

and makes it easier to work out how to best apply a change.

1.2 Salient Features

JavaGram builds on the strengths of Java and closely follows the Java syntax and
semantics, including strong type checking. This should makerit easy for a Java
programmer to become proficient in JavaGram.

This sectionsummarizesthose features of JavaGram that characterize it as an agile
programming languagaVhi | e reading this summary, donot
entirely clear to youwr sounds too technical. The intent here is to give a flavor of
JavaGram in a limited space. Subsequent chapters will explore these topics in greater

depth andata gentler pace.

16 JavaGram Agile Development

1.2.1 Server Centricity

Historically, programming languages have been designed thighassumption that
application code will need to be installed in its target environment before it can be
executed. The World Wide Web has been the most significant departure from this
paradigm. Under this model, a web application is notimstalled onthe client side, but

is incrementally downloaded in response to actions taken by the user. However, this
dynamicallydownloaded code (HTML, which may also include JavaScript and the like)
is primarily concerned with presentation, and is generated by thal application code
residing on the webesver, hence the terrthin client.

Web page is
delivered to client

Client)
World-wide-web Web Server

Client requests /
web page

http://www.acme.com/products

The desigrof JavaGram was inspired by thisodel, with a keydifference: rather than

the server generating presentation code for tleaglthe sever delivers executableode

to the client. Like the web model, the client initially contains no code at all, but rather is a
shell capabl e of receiving code and &éinterpr
browser; in the JavaGram model, tbiéent is a compact runtime environntecalled

JAG.

Introduction 17

Script is
delivered to client

JAG loads and

Sxecutos sipt /;/(),(((\(\
D SR

— \if, .

Client

World-wide-web App Server

Client attempts to /
Access a script

www.acme.com:443/search.jag

A JavaGram client boots itself against a JavaGram server using an initial address (similar
to a URL in a web browser), which identifies the server and the initial scriggspronse

to this, the server creates a session thread to handle all subsequent communication with
the client. The requested script is then sent to the client, which the latter loads and
executes. During the course of execution, the script may referdo sthipts, which are
sourced from the server in a similar manner. Therefore, the client code base is built
incrementally according to user actions.

Like the thin client model, the serveentric model of JavaGram has a number of
advantages over the tréadnal fat client model; namely:

1 There is no need to install an application at the client end.
1 An application can start quickly because the loading process is incremental.

T Rel ease management is much easier, as a ne
to be installed on every client, just on the server(s). The latter is much easier because
servers are centralized and there is a lot less of them than €lwhish are not only
numerous but also often out of reach.

The JavaGram model also retains soofighe advantages of the traditional fat client
model; namely:

1 Unlike the thin client model which is stateless, the JavaGram model is stateful.
Because each client is allocated a dedicated session that lasts for the duration of the
connection, the sessiamccurately reflects the serveide state of the client. This
eliminates the burden of additional programming normally required for thin clients to
keep track of state information.

1 JavaGram supports both synchronous and asynchronous requests, as opfiesed to
asynchronousnly thin client model.

T The programmer can del egate some of the ar
(e.g., report generation, complex calculations) within the same code base. This

18 JavaGram Agile Development

provides more scope for load balancing and makinge t hat server (s) d
a bottleneck.

For lack of a better term and to distinguish the JavaGram model from the fat client and
thin client model s, webybridclienurhoslebquent |l y refer

1.2.2 Browser-based and Native Desktop Clients

A unique feature of JavaGram is that the same application code base can support
browserbased as well as native desktop cliedgsiaGram achieves this by offering two
versions of itguntime environment:

1 The Flash version of the JavaGram runtird&Géwf) is written in ActionScript 3
(AS3) and runs within the Flaghlayerengine. When a browséased client uses this
runti me, itds automatically downl oaded fro

1 The Java version of the JavaGram runtids.far) is utilized by native desktop
clients. The same runtime is also used by JavaGram sasengll asstandalone
applications.

Both runtimesare very compacand thereforearry little download overheads.

1.2.3 Static and Dynamic Loading

JavaGram support static as well as dynamic loadingrgitscStatic loading is suitable

for specifying crosscript dependencieBynamic loading is suitable faituationswhere

we dondt want a scirtifpst a oot i bvea t(degd ahebgstr au nttriil g
performing an action In both casesthe regiested script may b&ourced locally or from

an application server.

The JavaGram application server uses an implicit form of dynamic loading to serve

remote calls received from a client. When a remote call is recdiyea serverthe

underlying messagencludes the path of the script that contains the definition of the

targetc | as s . The server wuses this path to dyna
loaded. This ensures that the loading of scripts on the s&deeis automatic, demand

driven, aad hence not a burden on the programmer.

1.2.4 Code Caching

To minimize clientserver traffic, JavaGram employs a conmgmsive caching
mechanism thanhaintains an active cache on both the client and sends

On the client side, the cache is somewhat smddhe local cache of a web browser, but

is more deterministic. Whereas a web browser refreshes the pages in its cache based on
their age, JavaGram requires an exact timestamp match. This is necessary in order to
ensure the consistency of the versionsaripts that make up an application.

Introduction 19

The serverside cacheservesa different purpose. Because a JavaGram script can contain
code intended for clients and/or servers, each scriptmpidéed to produce two variants

one for the clienside (from whichserverrelated informations removed) and one for the
serverside (from whichclientrelatedinformation is removed). These binary files are
deposited into the servside cacheThis cache is automatically updated when a script is
modified.

1.2.5 Built-in Types

JavaGram provides the following buift types.
1 Atomic Types:

boolean (similar to Javaoolean)

char (similar to Javahar)

int (similar to Javaong)

real (Similar to Javailouble)

string (similar tojava.lang.String).

=4 =4 4 A4 A -

symbol (like string except that muiple instances having the same representation
are stored only once)

]

date (date and time)

stream (mechanism for performing 10 with respect to a file, bufferchent
server communication chaniel

1 Composite Types:

1 vector (contiguous sequence of values,lwiandom access)

1 list (sequence of values, without random access)

1 map(key-value pairs, with random access)

1 object (opaque instances of us#efined types, similar tavalang.0 bject)
1 Pseudo Types:

1 vague (can represent any type)

1 native (Java values withaequivalent type in JavaGram)

1 wvoid (absence of a value)

Values for atomic and composite types can be created literally (excegtedor) or
programmatically.

1.2.6 Object Orientation

The OO features of JavaGram are very similar to Java, with the followitadlao
exceptions.

20 JavaGram Agile Development

Support for multiple inheritance.

Support for remote methods and classes, both of which are managed transparently to
the programmer.

1 Support for GUI members (behave like class fields and allow you to define user
interface components decddively and hierarchically).

1 Support for text members (behave like methods and allow you to do advanced text
processing).

1 Support for SQL members (behave like methods and allow you to igolat&SQL
code).

Support for singleton classes.

Support for objet literals (class instances that are created at load time rather than
runtime).

1 Ability to limit the visibility of a class method to client or server side.

1 Ability to specify default argument values for methods.

1.2.7 Multiple Inheritance

Multiple inheritance MI) is a powerful design tool that, when used judiciously, can
simplify a design and reduce development effort. Unfortunately, Ml has attracted plenty
of bad publicity due to complex realizations (e.g., C++) that programmers have struggled
with. JavaGramtgempts to remedy this using mutual classes:

1 A derived class can have multiple base classes, provided at most one of them is non
mutual.

All the base classes of a mutual class (if any) must also be mutual.

Mutual classes that are inherited more than omca iclass hierarchy (as in the
6dreaded diamondd probl em) are treated as
instance of the derived class contains onl
this sense, mutual classes behave like virtual dasses in C++.

1.2.8 Automatic Remoting

Remote methods represent one of the most powerful features of JavaGram. They make
the task of writing clienserverapplicatiors exceptionally easy by removing the burden

of having to deal with data communication, symectization, hanghaking, error
handling, and so on. As a result, invoking a remote method on a server becomes as easy
as invoking a local method. Hiding all this complexity has the added benefit of allowing
the programmer to easily use the same code fardiit deployment models (standalone
versus distributed).

JavaGram also allows yoto define an entire class as remote so that all its actual
processing is handled on the sersigle.When a client obtains a reference to a remote

Introduction 21

object, it receives a pxg object instead. Any operatioperformedon the proxy is
transparently applied to the remote object.

I n practice, a client has no way of Knowi
method/class or a local one. This ensures that code designed to beedegdoglient

server will also work when run as standalone. The obvious benefit of this is a simplified

testing proces$ developers can develop and test standalone and later switch te client

server when the code is more fully developed.

J av a Gr a monshandlingcwenst seamlessly across the cleemver boundary. For
example, an exception raised (on the seswde) by a remote method is delivered to the
caller (on the clienside) as if it were a locally raised exception.

1.2.9 Asynchronous Method Invocation

Asynchronous method invocation allows you to call a (local or remote) method such that
you dondét have to wait for it to complete.
soon as the call is made. When the call eventually completes, a callbackkiedineo

complete the processing. If an error callback is also specified and thedniktbws an

exception then the erradlbackis invoked instead.

1.2.10 Declarative GUIs

JavaGram offers a completely different styl
WhereasGUI programming in Swing is procedural, JavaGram allows you to define a

GUI declaratively. This has a number of advantages: you write a lot less code, the code is

much more readable, and the code readily portrays the hierarchical structure of the GUI.

As aresult, creating sophisticated GUIs in JavaGram is much easier than in Java.

GUI members are defined using a markup notatibnis markup notation carbe
extended by the programmer to devise new and novel components.

1.2.11 Parameterized Text

Programs often ha&/ to do some level of text manipulation. In most programming
languages, this is done through string concatenation (e.g., using the + operator or the
String Builder class of Java). The end result is rather messy and difficult to visualize due
to the procedw nature of the code.

JavaGram offers two facilities gimplify text handling The first is called delayed strings

and is useful for simple text parameterization tasks. For more elaborate tasks, JavaGram
provides text class members.téxt member is lilk a method and can be used to handl
parameterized text.

Like GUI members text members aralefined using a markup notatiowhich is
extensible In fact, JavaGram provides a number of such extensions for SQL handling.

22 JavaGram Agile Development

1.2.12 Database Interaction

In JavaGram, imraction with databases is facilitated by tbg pseudo class.
Additionally, a number of parameterized text constructs are provided to make SQL
formation straightforward and consistent with the declarative style of JavaGram.

One of the readability ben&di of the JavaGram style of SQL programming is that all
SQL commands are localised<ext.sql..> markups and are hence easily identifiable.
This is superior to the traditional style where SQL is freely sprinkled throughout the code.

1.2.13 Serialization and Parsing

A useful feature of JavaGram is that any value (other dimam andnative values, but
including class instances) can be serialized to clear text, as well as parsed without any
extra programming effort. The resulting benefits are:

1 Complex data steiures (such as meta data) can begpeated in code. This is
convenient as well as selbcumenting.

Programs can be debugged more easily.

Composite data can be stored in a single database column and retrieved easily, thus
facilitating much simpler dataodels.

1 The data exchanged between client and server ends can be easily viewed in a readable
textual format.

The ability to parse dadluableio some prajemmingn t he
situations. I tds especi al |can substanfiallylredicen agi | €
coding and maintenance effort.

1.2.14 Business Objects

JavaGram provides a pseudo class)(and a library clasbject) that together provide

a convenient framework for working with business objects that require persistence. By
sub-classingObject , you can quickly develop a persistent business object without writing

any SQL.The rel ationship between the objectbs
table is specifiedy the programmeais meta data, whidtnablebject to work out how

to map the data.

‘N

1.2.15 Java Interoperation

JavaGram provides a simple facility for interoperating with its underlying
implementation language (Java). Téwjava) method uses reflection to allow any

Java class or method be accessed, and automatically majpetietan JavaGram types

and Java types. This method is rarely used, but is a useful last resort when the
programmer needs to do something that JavaGr

Introduction 23

1.3 Implementation

JavaGram has been developed in pure Javal AS3) and is therfore platform
independent. The implementatiorcsmprised ofour parts:

1 JavaGram rumme environment (JAG) in two versions (Java and AS3).

1 JavaGram Development Environment (JADE)
1 JavaGram Server Monitor (JSM)

1 JavaGram standailitbrary scripts

The AS3 (Fash)version of JAG comes in three flavor for use in a web browser, Adobe
AIR, or Android.

The overall architecture of JavaGram is illated by the following diagram, and the
components described below.

JavaGram IDE (JADE.jar)
JavaG
Projector Editor Code Insight asveaw;arm
Monitor
(JSM)
Runner Debugger AutoAnalyzer
JavaGram Runtime (JAG.jar) JavaGram Runtime (JAG.swf)
GUI SaL BOM App Proxy GUI BOM
Package Package Package Senver Senver Package Interface
Core Package Core Package
I Parser | |An alyzer}
‘ Parser | | Analyzer| [Evaluator| | Compiler JTP
|Eva\uator| JTP
Java Runtime Environment (JRE) Adobe Flash Engine

1.3.1 JavaGram Runtime Environment

JAG is packagedsaa single JAR fileJAGjar) .

vént conspact (currently around 1.78

MB) and provides a complete environment for deploying and running JavaGram
applications, including:

i Parser, analyzer, and evaluator for interprefimgaGram code

1 Compiler for convertig JavaGram code into binary format

1 JavaGram Transfer ProtoddITP)for clientserver messagin@ver socket, HTTP, or

HTTPY

24

JavaGram Agile Development

1 Application server (for deploying JavaGram servers)

1 Proxy server (for failover and load balancing application servers)

Every JaaGram client or server is deployed using JAG. A server deployment also
requires a configuration file which specifies the server settings (for security, data
compression, database connectioolp, session management, etag well as any other
JAR files sed (e.g., JDBC drers FOP library, etc.)

All JavaGram servers are generic and exceptionally easy to setup and deploy (taking only
a few minutes). The same application server instance may serve many different
applications. JavaGram code is deployed artapplication server by simply dropping it

into a nominatedlirectory,

One of JavaGramds i mpAGrclierd (Java vprsiommeds mdbe i s t ha
installed only oncgFlash version is automatically downloaded by the browsSeng

process is ke this. The user downloads and runs a small installation program (which

installs JAG jar a small Java keystor e, and a shortc
user s machine. When the user runs the shor
(scrips are demandownloaded as necessary and executed). Application maintenance is

totally transparent to the user:

1 When a new version of the application is released to a server (i.e., revised scripts),
these revisions automatically find their way to thentliastallations.

1 If a new version of]JAGjar is released to a server, this can be automatically
propagated to all clients that depend on the changes in this JAR, causing the new JAR
to be automatically downloaded by the affected clients, and replaciotgtdaR.

Furthermore, application code changes that leave class schemas unchanged (i.e., only
affecting the implementation of methods) can be deployed without restarting a server or
any client. This allows emergency hot fixes to servers without disrufmiasers.

JavaGram application servers are highly scalable. Multiple servers can be deployed in
either a failover or load balanced configuration. Where load balancing is used, traffic is
routed via one or more proxy servers, which in turn match clagamst server instances
based on their load.

1.3.2 Compilation

The JavaGram compilation process is straightforward. A script is parsed, analyzed, and
converted to an equivalent byomde When a server internally compiles a script, it

produces two compiled veosis, one for clienend and one for servend. Either version
excludes information thatods not relevant to
also be explicitly compil ed, i n which <case
to the sourceExplicit compilation is suitable for cases where an application is to be

deployed in binary rather than source format (e.g., for intellectual property reasons).

Introduction 25

The JavaGram parser can parse scripts in source or binary format. The latter has the
advantge of being more secure and more efficietite parser has to do a lot less work.

The binary codec used by the compiler is version controlled, so if a client tries to load a
script thatods been encoded usi ngrefeeshofout dat e
that scriptfrom the server.

1.3.3 JavaGram IDE

The JavaGranDE (packaged a3ADEjar) provides a productive visual environment for
developing, debugging, and running JavaGram applicati@scomponents include:

1 Projector for setting up and managjithe source code for a project

1 Syntaxdirected editor, which automatically coloodes your code
1 Code Insight for visual navigation of code elements and auto completion
1 Runner for configuring and running applications as standalone, client, or server
1 Debuwger for setting up breakpoints, inspecting the runtime stack, and viewing the
values of variables
T Auto Analyzer which automatically parses a8

type, works out dependencies, and visually highlights errors
For a detailedlescription of JADE, please refer to Chapter 14.

1.3.4 JavaGram Server Monitor

The Server Monitor is a companion tool for monitoring deployed servers. This tool is
implemented entirely in JavaGram and its source code is included in the JavaGram

releaselts functionality includes:
1 Viewing the server sessions and managing them

{1 Viewing server memory usage pattern

1 Viewing the server log, where diagnostic information is recorded

1 Uploading and downloading of files for investigation and patching purposes
1 Resetting theerver and/or its database connection pools

)l

Temporarily suspending user access for maintenance purposes
For a detailed description M, please refer t&€hapter 7

1.3.5 JavaGram Standard Library Scripts

JavaGram comes with a standard library in source foriftae scripts in this library
provide you with a set of reusable classes for a varietyasks including GUI
development, server deployment, SQL handlibgsiness object managemeuiata

26 JavaGram Agile Development

export, etc.Many of the examples presented in this book utililzese scripts and
illustrate their use. The obvious benefit of using the library is productivity.

The standard library scripts are detailed in Chapter 13.

1.4 Download and Installation

To setup a working Ja@am environment so that yaando development antry out
the examfes presented in this book, yoweed to download and install the following
components.

1 Download the latest JRE or JDK frg@awva.sun.conand install it, unless this is pre
installed on your computer.

1 If you intend to use a browser cliempwnload and install the Flash Player from
www.adobe.comunless this is prastalled on your computeiSimilarly, if you
intend to use an Adobe AIR client, also download and install Adobe AIR.

1 Download the latest JavaGram release fromw.pragsoft.comand install it. This
installation is required on any computer where you intend to run a JavaGram program
(be it standalone, client, or seryeWWhen installing on a computer intended for
development work, you should also choose the option for installing JADE

1 Download the latest transactional MySgleasefrom wwwmysglcomand install it.
All the SQL examples in this bodiave beemeveloped with MySql, but you can use
any other database engine that supports JDBC. However, if you use aroBter
compliantproduct(e.g., Oracle, SqlServer, Firebirgou may need to alter the syntax
of some of the SQL examples to conform to that product.

Introduction 27

2 Fundamentals

JavaGram programs consist of scripts. Each siiattext file whose name ends.jay
(e.g.,Testjag). Compiled script names end jax (e.g.,Testjax). Each script defines
one or more classes and may refer to classes in other s&umis. dependencies are
specified through the load facility, which enables one script todtiaers during its own
loadingor, dynamically, duringexecution

2.1 Example

Theminimal syntax of a scripis exemplified below.

Hello World.jag

<jag domain="doc/code /chap2">
class Helloworld {
public static void main () {
sys. printin ~ ("Hello World!");
}
}

<ﬁag>

You can run it from a DOS command line like this:
java -cp JAG.jar jag.run.Env C:/JavaGram/doc/code/ chap2 /HelloWorld.jag
It will produce tle following output.

Hello World!
Let s | ook at the contents of this script an

The code for a JavaGram script is always enclosed 4jpg&/jag> pair, where<jag>
marks the beginning of the script afidg> marks the end of itAs in HTML and XML,

a JavaGram markup can have properties. For examplesjathe markup here has a
domain property. This is somewhat similar to the package construct in Java, in that it
definesa namespace fdahe script.As a result, the class defined in thisigthas a short
name Kfelloworld) and a long nameldc\ code\ chap2\ HelloWorld). The latter is called a
qualified class name Ordinarily, we use the short name atlass, but if two or more
classes defined in different domains have the same name, thieedu@dissname can be
used to avoid ambiguity.

You may have noti ced t hat webve used for we
backward slashes in the qualified name (Java psgods for both)The forward slash

notation is actually a convenience. A domeam dso be specified using baslashes. For

example:

28 JavaGram Agile Development

<jag domain="doc \\ code\\ chap2">

Because a backslash must be escaped inside a string, this notation is a little inconvenient,
so the forward slash convention is usually used instead. When usindifeed|u@ass

name in code however, only the backslash notation is allowed, as forward slashes are
treated as the division operator.

The rest of the script definessimple class calledelloworld . A class represents a user
defined type, and is a way of gqaaging datafields) and behaviorrfethodg so that it
can be conveniently used elsewhere in the progfamavaGram program is simply a
collection of classes that refer to one another.

Itds worth noting that, u n | i ite scripfiemeed t h e
not match. You can also put multiple classes in the same script file. For each class,
JavaGram internally records the script that contains it and uses this information to locate
the right script when needed.

The definition of aJav&rameclass consists of the keywotdss , followed by the class
name, followed by the class body. The lattemislesedby a pair of braces:

class HelloWorld {

}

A class name must be a vaidkntifier (a sequence of letters, digits, or underscdoes
not starting with a digit). The recommended convention in JavaGram is to capitalize the
first letter of every word of a class hame.

TheHelloworld class contains just one method caltedh :

public ~static void main () {
sys. printin ("Hel lo World!");
}

Like a class name, a method name must be a valid identifier. The recommended
convention is to write method namesdamel case(capitalize the first letter of every
word except for the first word).

A method is a recipe for computatiora sequence of instructions to do somethirtge
keywords public and statc appearing at the beginning of the method are called
qualifiers. A qualifier imposes a certain rule on the thing that it qualifies. For example,
the public qualifier givesmain pulic visibility, so that it can be accessed outside the
class; and thatatic qualifier makes the method accessible ewattiout having class
instances (more on this later).

Fundamentals 29

Every method must haveraturn type (this appeardefore the method name) which
specifies the type of value the mewdhised wi ll
a pseudo type, implying the absence of a value. In other waagisdoes not return

anything.

The empty pair of parenthesappearing after the method name rnse¢hat main has no
parametersThe qualifiers, return type, name, and parameters of a method are collectively
called itssignature, somain has the following signature:

public static void main ()

Finally, the body of the method appears last and (like ss ddady) is enclosed by a pair
of bracesGenerally, the body of a method consiststatements where each statement
specifies aspecific instruction ocomputationBeing a very simple methoaain has just
one statement:

sys .printin("Hello World!");

The effect of this statement is to write the stridglo World!" to standard output.

(Standard output is a predefined stream, normally tied to the screen in which you run

your program, causing output to be displayed in that sqQr&ais statement isself a call

to a methodpfintin) of another classys). The latter is gpseudo classuilt into JAG

The term 6pseudo cl as sthat ehayellike asmaltclasdastr e d e f i n e
canodot be instantiated or extended.

In JavaGramevery statemdmmust be terminateldy a semicolon. A semicolon on itself
is al® considered a statemean(empty statement).

As arule, i a class has main method that igublic static void and with no parameters
(asHelloworld does) thenhis method is treated spalty i when such a class is loaded,
this method is automatically calledhis is usually the starting point of execution for a
program.

2.2 Loading Scripts

Before it can be executed, a script must be loaded into JAG. There are three ways for
loading a script:

1 As acommand line argumentI&G.jar . Use this method to run the initial script of a
JavaGram program.

1 Using the <load> markup inside a script. Use this method to document the
dependencies of a script on other scriptsis is calledstatic loading i when the
enclosing script is loaded, it causes the enclosed scripts to be also loaded.

1 Using thesysload) function. Use this methoébr dynamic loading of a script
during program executioflhe script is loaded only when thg.load() function is
executed This is useful whenyou want todelay the loading of a scriptu n't is | it o

30 JavaGram Agile Development

actually neededpr example, in response to the user pressing a btittdmitiates a
calculation which is to be performed by the nominated script.

When you load a script usirgny of these methods, JavaGram processes the script in
three successive stages, as illustrated below.

Parse Analyze Evaluate

¥

¥

During parsing, the script is checked for syntactic correctnesgntécticallycorrect, the
script is analyzed for semantic validity. Finally, dth thesestagessucceed, the script is
evaluated byvaluatingits clasgs in the order in which they appe@he evaluation of a
classcauses its static fields arsfatic blocks to be evaluated. Also, if the class has a
public ~ static void main method it may be evaluatt depending on the load
configuration (this is always the case when loading from the command line).

Here is an example of how to load a script usingttag> markup

CarTest.jag
<jag domain="doc/code/chap2">
<load >
"doc/code/chap2 /Car"
</load>

class CarTest {
public ~static void main () {
Car car = new Car("Toyota", "Camry", 2007);
sys . println (car.format());

}
}

<ﬁag>

It refers to another script which defines the clzss

Car jag

<jag domain="doc/code/ chap2">
class Car {
protected string make;
protected string model;
protected int year;

public ~ Car (string make, string model, int vyear) {
this .make = make;
this .model = model;
this .year = year;

}
public stri ng format () {

return make + " " + model + " " + year,
}

Fundamentals 31

}

<ljag>

You can rurthis program using theommand line:
java -cp JAGjar jag.run.Env -root C:/JavaGram doc/code/ chap2/ CarTestjag
It produces the following output.

Toyota Canry 200 7

Not e how weito eptian soemkcify ehreot directory for scripts. By default,
scripts appearing inside theload> markup are relative to this directory. So
doc/code/chap2/C arjag resolves tcC:/JavaGram/doc/code/ chap?2 /Car.jag

You can speéy multiple file paths within aload> markup each of which must be a
string. The stringsnustbe separated by whitespaddie recommended convention is to
put each filgpathon a separate line.

Let 6s discuss the contemaneg. of these two scri

Car is a simple class that has three fieldske, model, year) and two methodsCér,
format). Fields are used to hold data. As wittethod, fields may have qualifier$ all
three fieldshereare declared to b@otected . This qualifiers means & these fields are

not visible outside the c¢mhenmbeasandmembeeysdr e onl

anyclasses derived froer (derivedclassesire described laterevery field must have a
type which specifies the kind of data that the field ¢eid. Both make and model are
specified to be of typetring (arbitrary sequence of characters enclosed in double
quotes)andyear is specified to be of typet (integernumbej. A field name must be a
valid identifier. Like methods, the recommended @ntion isto write field names in
camel case.

The first method of th€ar class has the same name as the class itself. This method is
called aconstructor. You never specify a return type for a constructor because the return
type is implicit and is the abs itself. Constructors are used to craatancesof a class.

The distinction between a class and its instances is very important and fundamental to
understanding objedriented programmingA class represents a potentially infinite
number of possilities. For example, théar class represents any car. However a specific

car (e.g., a 2009 Nissan Patrol) is represented by an instanceCaf thass.Therefore, a

class is an abstraction (a concept) whereas its instances are concrete things €dlso call
objects) i hence the ternbobjectoriented programmir@yWhen a class instance (object)

is created, a piece of memory is allocated to represent the object. The data for the class
fields is actually stored in this piece of memory.

A

Let 6s | o aikion aftheCtr boastrutterf i

32 JavaGram Agile Development

public Car (string make, string model, int year) {
this .make = make;
this .model = model;
this .year = year,

}

This method takes thrgerameters These appear after the method naméhin a pair

of parenthesesand separated by commdsach parameter consists of its type and an
identifier. The job of this constructor is to assign a value to each of the three class fields
using a corresponding parametéhe assignments are done using th@peaator, which

copies the value represented by its right operand to the location represented by its left
operand(this is called anvalue i something that can appear on the-gfte of an
assignment)Because the parameters have the same name asthe cleasd ds, wedve u
thethis. id notation to refer to the field§o, for example, the first assignméititmake

= make copies the value of theake parameter to themake field. this is a reserved word

that can only be used imon-staticmethodsi it refersto the object on which the method

is invoked.

As an aside, the initial value of <c¢class fi el
time of definition) is somewhat different to Java. In Javaintarfield, for example, has

an initial implicit value of 0, and &tring field has an initial value aofull . In JavaGram,

every field, regardless of its typeas an initial value afull .

The second method (formaBturnsa string representation of a car.

public string format () {
return make + " " + model + " " + year;
}

The string is produced using the string concatenation operaldris operator can take
operands of various types (e.g., strings, numbers) and joins together their string
equivalent.Thereturn keyword causes the selting string to be returned as the overall
value of the method.

Themain method of the€arTest class illustrates how ther class may be used.

public ~static void main () {
Car car = new Car("Toyota", "Camry", 2007);
sys. println (car .format());

}

The first statement in this method uses iibe operator to instantiate ther class to
create an object.his operator must always be followed by a call to a constructor method.
Because the constructor feéar has three parameters, allcto it must provide three
arguments The types of these arguments must match the types of the corresponding
parameters. The newly created object is assigned to a local vacaable (

Fundamentals 33

The second statement invakine format method on the object repreged bycar . The
resulting string is then passedsyeprintin -~ to write it to standard output.

2.3 Expressions and Statements

The body of a method always consists of zero or nsteements These statements
representhe computational steps of the methodiorpther words, itSmplementation.
Statements are composed hierarchicallysimpler statements may be combined to
produce more complex ones. When a statement is exeduf@dduces a sideffect,
such as altering the value of a variable, creating gtplor reading/writing data from/to
a stream.

Statements utilize another building block calegressions Expressions also represent
computations but theydore different from st e
effects they simply produce valse For example,

10+ 20
is an expression (it simply adds two numbers to produce a new value) whereas,
intn=10+ 20;

is a statement because it stores the result of adding two numbers (an expression) in a
variable, thus altering the value of theighte (a side effect).

The reason this distinction is important is that the JavaGram syntax expects you to use
expressions in some places (e.g.ltggcalc ondi t i on of an 06ig$ 6 state
in other place¢ e . g . , partod @tsidweadent)sd you need to know which one

to use whereTo make matters more confusing, some constructs can be used in either
capacity. For example, a call to a ramid method can be used eitlees an expression or

as a statement. So, in this case at Jeastt he ear |l i er observation t
produce side effects is not entirely true. It would be more acctoasay that most

expressioan dond6t cause any side effects.

As you read through the rest of this book, if you want to learn more abota@oylook

it up in the reference chapters. For example, to find out more about the methods of the
sys pseudo class, refer to their spamtion in Chapter 10. You might also find Chapter
15usefuli it describes the JavaGram syntax.

The rest of this ltapter introduces the commonly used expressions and statements of
JavaGram using some simple examples that illustrate their purpose.

2.4 Types

The notion of type is fundamental ta proper understanding of programming.
Simplistically, a type represents a sépossible values. For example, ihte type covers

34 JavaGram Agile Development

all integers. The relationship between a tygenfethingabstract) and a valusgdmething
concrete) is the same as the relationship between a class and its instances.

JavaGam is a strongly typeldnguag, implying that:

1 Whenever you create a variable, you must specify its type. JavaGram will not allow
you to storea valuein the variable thad o e elodd to its type.

1 When you invoke a method, the type of each argument you pass to the method must
matchthe type of the corresponding parameter.

JavaGram comes with a numberpoédefined types (see Chapter fb® details). These
represent types that you need [Ibuitinta theno s t eV eE
language to ensure an efficient runtimglementation.

A JavaGram class is also considered to be a type and is callsst-defined type In

fact, classes are the mechanism through which the JavaGram type systdendedIn

this sense, when you write axpandngdghe type, wh at
system. There is also a set of standi#cary classes (see Chapter)liBat provide

various useful types for use in your projedisese not only save you time but also serve

as Obest practicebd becausesignpditeans. encour age t h

I f youdr e -amented programmning tben the concept of type could take some
time to get used t o, but this i1 nvestment

5 —

power of objecb r i ent ed pr ogr ammi n g moreVetdllinlthe oeatv e r t
chapter.

2.5 Control Flow

Any nonttrivial program has to deal with possibilitiesf a certain condition holds then

do this, otherwise do something else. This type of conditional behavior is realized by
statements that allow the pragn to take different execution paths based on logical

conditions. This concept is calledntrol flow (or flow of control).

The simplestontrol flow statement is thé statement Let 6s | ook at a sir

that illustrates its use. Consider the daling class which represents bank accounts.

<jag domain="doc/code/chap2">

class BankAcc {
real balance;
static final real CREDIT_RATE = 0.045;
static final real DEBIT _RATE = 0.065;

public ~ BankAcc (real balance) {
this .balance = balance;

}
public void applylnterest 0 {
if (balance >= 0)
balance += balance * CREDIT_RATE

Fundamentals 35

else
balance += balance * DEBIT RATE

public ~static void main () {
BankAcc accl = new BankAcc(500) ;
BankAcc acc2 = new BankAcc(- 200);
accl.applylnterest();
acc2.applylnterest();
sys. printin ("Accl balance is ", accl.balance);
sys. printin ("Acc2 balance is ", acc2.balance);

}
b
<Uag>

The applyinterest() methoduses an ifstatement to decide which interest rate to, use
based on the account balance. For an account in credit ICRE&®$ RATEand for one in
debit, it use®EBIT_RATE The condition appearing after the keyword must be a boolean
condition (somdting that evaluates to true or false). When it eatalsl to true, the
statement after it is executed; otherwise, the statementefieis executed (thelse

part is optional).

If you run this program, it will produce the following output.

Accl balance is522.5
Acc2 balance is -213.0

Here are a few more observations about this program:

1 Thebalance field has noexplicit visibility qualifier, therefore itds
domain visibilityi i t 6s accessi ble by all cl assses
class.

9 CREDIT_RATEandDEBIT_RATE are both defined to beatic andfinal . This is how you
define constants in JavaGram.final field must be initialized athe time of its
definition; its valuecannot be subsequently alteredst&ic field is sharedetween
all instances of its parent clasSo each time you create an instanceBakAcc,
memory is allocated for thelance field but not forCREDIT_RATEandDEBIT_RATE.

1 The += operator adds its left and right operands and stibresoutcome in the lef
operand (which must be &ralue).

1 sysprint In() acceptsavariable number of argumenisero or morg)and senslthe
string equivalent of each argument to standard output.

1 The text starting witld is called a comment. JavaGram ignores anything apearin
after // until the end of the line. Comments are useful for documenting additional
information about a program. There is another stylevidfing comments that can
span multiple lines: anything appearing betwkeand*/ is treated as a comment.

36 JavaGram Agile Development

dee
def

Thereis also an expression form (callednditional expressior) that can be used to
rewrite certain Helse statements more succinctly. For example, we can rewrite
applylnterest() in the following equivalenstyle

public void applyinterest 0 {
balance += balance * (balance >= 0 ? CREDIT_RATE: DEBIT_RATE)

}
In a conditional expression, the condition is always followed by a question mark,
foll owed by the O6thené expression, foll owed
The overall vlue of the expresi on i s t he Othelcenditon evalupteseos si on i

true,andt he O6el sed expression otherwise.

Another form of conditional statement is when we want to compare a value against a
number of different possibilities, and take actimtadingly. This is facilitated by the
switch statementTo show its use, consider the following class.

<jag domain="doc/code/chap2">
class Calculator {
static real calc (char op, real vall, real val2)
switch (op) {

case '+. ret un vall + val2;
case '-" return vall - val2;
case . return vall * val2;
case '@ return vall [/ val2;

default
sys. printin ("Unknown operator: ", op);
break ;
return null ;

static void main () {
sys. printin - (calc (+, 10, 20));
sys. printin (calc (*, 10, 2.4))
}
}
<ljag>

The calc() method takes three parametess character that represents an arithmetic
operator, and two real nars. It uses a switch statement to determine what to do based
on the value ofp. What appears after teitch keyword (within parentheses) is called a
selector Each possibility is specified by @ase which consists of the keyworgse ,
followed by a iteral (of the same type as the selector), followed bglon, followed by

zero or more statements. The selector is compared against the case aradudse
statements for the matching case are executed. The finaldefasie () is optional and
when preentact s as & if ioweaot therearlierl chsés match the selector then
this one is exercised instead.

Fundamentals 37

Running this program produces the following output.

30.0
24.0

Some further observations about this program:

1 Becausealc() is a static metbd, it can be invoked without having an instance of the
class, adllustratedin main() .

A character literal is always delimited by a pair of single quotes.

When a matching case of a switch is executed, execution continues to the statements
for the next cae and so on, unless the switch is exited usimgak statement, or the

whole methods exited using aeturn statementThe break statement at the end of
thedefault case is evidently redundant, but is considered good coding practice.

This program does o6 t cater for the possibility of
calc(', 10, 0) will result in the following.

é/code/chap2/ Calcul ator .| a{6)ERROR:alvisiod byeesd 25
10 case /" return vall / val2;
N

We can cater for this case usingifarstatement:

static real calc2 (char op, real vall, real val2) {
switch (op) {
case '+ return vall + val2;

case '-" return vall - val2;
case ™. return vall * val 2
case I
if (val2 ==0)
break ;
return vall [val2;
default
sys. printin ("Unknown operator; ", op);
break ;
return null ;

}

ltés worth noting that the type of wvalues
for the cases) must be integer, character, or synwel.6 aleadyseen examples of
numbers, baracters, and string literal& symbol literal consists of theS character
followed by an identifier. For examplg&iame, $address , $id .

Here is aevised versiomf theCalculator class using symbols instead of characters.

38 JavaGram Agile Development

static real calc3 (symbol op, real wvall, real val2) {
switch (op) {
case $add: return vall + val2;
case $subtract: return vall - val2;
case $multiply: return vall * val2;
case $divide:
if (val2 == 0)
break ;
return vall [val2;
default
sys. printin ("Unknown operator: ", op);
break ;
}
return null ;
}

In many ways, symbolsan be thoughof aspseudo identifies; which makes them useful

for storing identifiers in variab&objec t s, et

Cc.

For

such

uis e s,

they consume less memory and they can be more efficiently comparegikample, if a
string (such as "name") appears 20 times in a program, JavaGram actually creates 20
separate representations onitmemory. Whereas if a symbol (such$aane) appears 20
times in a program, JavaGram creates only one instance of it, causing all occurrences to

point to the same representation.

To appreciate the comparison efficiency, consider the followasgs.

"name" == "name"
$name == $name

Il gives true
I gives true

The== operator checks for equality. Nowrtsider the identicity operator.

unamen ——= "name"

$name === $name I gives true (stor

This operatorretust r ue onl y when

I gives false (stored in separate places)
ed in the same

it

this reason that makes symbols suitableuf® in aswitch .

2.6 lteration

S

location)

t wo

operands

A common programming task is to repeat a certain computation many times (e.g.,
cdculate the interest for each account heldaabank). This is callediteration and is

supported by various forsof loop statements.

As an example] et 6s consider

factorial of a numben (written asn!) is defined by these rules:

i Factorial of O is 1.

i Factorial ofnis ntimes factorial oh-1.

t he

t ask

of cal cul

Fundamentals

39

t he

poi

ati

So, for example:
5l=5x4x3x2x1=120

Here is a simple class that uses a loop to implement factorial.

<jag domain="doc/code/chap2">
class Factorial {
public static int factorial (int n) {
int f=n==07?1: n

while (n > 1) {
f *=n- 1
n-=1,
}
return f;
b o
public ~static void main () {
sys. printlin ("factorial(5) =", facto rial (5));
}
b
<ljag>
The while loop in thefactorial() method iterates through decreasing values. dthe

loop condition 6 >1) is first evaluated. If this condition evaluates to true then the loop
body (appearing within a pair of braces) is exetut@therwise, the loop is terminated.
Each time round the logp is multiplied by the next valuen (- 1) andn is decremented

in preparation for the next iteration.

Running this program produces the following output.

factorial(5) = 120

Incrementing andlecrementing an integer are such common tasks that there eifec spe
operators for them+ (auto incrementoperator) increments an integer by 1 andauto
decrement operator) decrements an integer by one. We can use the auto decrement
operator to wri factorial() more succinctly:

public ~ static int factorial2 (int n) {
assert n >= 0;
int f=n=07?21: n
while (n > 1)
f *= —-n
return f;

}

The auto increment/decrement operator can appear befafeepanlvalue If it appears
before (as in the above examplidjelvalueis incremented/decremented first and then its

40 JavaGram Agile Development

resulting value is usedConversely,if it appears after, thévaluei s used and t hen
incremented/decremented.

Also note thatpecause the while loop now has a single statement as its body, there is no
need tause braces to enclose it.

Finally, wasétv@atemehtt@tde begmning of the method to guard against
situations where is negative. Arassert is always folbwed by a logical condition. If the
condition evaluatet false, an error is raised.

There isa variant of the while loop called theéo-while | o0 o p . |l tds wuseful fc
where we want the loop body to execute at least dickke the while loop, ao-while

loop first executeshe loopbody and then evaluates the loop conditidare is a simple

class that illustrates its use.

<jag domain="doc/code/chap2">
class Prime {
public static boolean isPrime (int n) {
assert n > 0;
int i =2
do {
if (n %i ==0)
return false ;
} while (++i < nf2);
return true ;

public ~static void main () {
sys. println ("isPrime(13) =", isPrime (13));
sys. println - ("isPrime(111) =", isPrime (111));
}
b
<ljag>

The methodsPrime() returns true when itparametern) denotesa prime numberA

pri me number is one thatdés divisible only I
algorithm here which iteratesfrom 2 ton/2, and check# see ifn is divisible byi . The

latter is done using the remainder opera@m(ich gives the remainder of dividimgoy

l.

Note how wedve decl ar ed t tooeleanr. €hisdypencoveryy pe o f
only two possible valuegue andfalse .

When run, the program prodwsibe following output.

isPrime(13) = true
isPrime(111) = false

Fundamentals 41

The final form of loop to be discussed here isfthreloop. We can rewrite th&Prime()
methodmore succinctly using this loop.

public static boolean isPrime2 (int n) {
assert n > 0;
for (int i =2 i <n2; ++) {
if (n %i ==0)
return false ;

}

return true ;

}

The parentheses appearing aftexfor keyword can accommodate three parts {safed

by semicolons) evergpne of which is optional. The first part is performed only once
when the loop commences execution. This is typically an assignment, but more
commonly a | ocally declared variablhe that
above I oop). The second part is the | oopb
performed at the end of each iteration (before the loop conditrereialuated).

0s
s |

Note that becausei s decl ared as t he | odypidide withohc a | var i
the loop, so it cannot be referred to outside the loop.

The simplest form of for loop is one wherethk optional parts are missing.

for () {
...
}

The effect of this oop i s t o it seqaivadntto thedfdolingmwhiee | vy ; It
loop.

while (true){
Il...
}

2.7 Composites

The termcompositerefers to a data strture that can holdhultiple values.By contrast,

simple data items (such as nungestrings, symbo) are calledatomic becausehey

cannot be broken dowinto smaller thingsWe 6 ve al ready seen one fo
data: class instances. The second form is catlethiners

2.7.1 Containers

Containers are exceptionally useful for everyday programmgag,much so that
JavaGram halsuilt-in notatiors to supporttem.

There are three different types of containers:

42 JavaGram Agile Development

1 Alistis an ordered sequence of items. Internallijst is implemented as a linked list
of items (i.e., each item has a pointer to the next item in the list). This makes lists
unsuitable for random aess becausén order to get to an itenyou have to iterate
through the earlier items in the list. The advantage of lists, however, is that they carry
very little storage overheads. That makes them ideal for reasonably short sequences
(i.e., up to tensfatems).

1 A vector is also an ordered sequence of items but with the added advanitage
random access.i@n the zerebased position of an item in thrector, you can lookt
up directly. Vectors are especially suitable for large data sets that requilernan
and/or frequent access.

1 A mapis acollection ofitemswhere each item (value) is accessed through aTkey.
items are maintained in ascending lexicographic key sort o@erceptually, you
can think of each entry in the map as a key/value pair. [glapsort random access
given a specific key, you can look up the corresponding value.

Containers are very flexible in that the items in a container can themselves be containers.
So, for example, you can have a map whose keys are symbols and whosearalues
vectors, or a vector whoseinhs are themselves vectors, and so on.

You would have noticed that with the atomic types, you can specify a value either
literally (e.g.,10) or programmatically (e.gi.+ 10). The same is true of container types.

2.7.2 Lists

All lists are of typdist . Here isasimplelist of three numbers:

list nums= $(10,20,30) ;

List literals are always delimited by parentheses, and the individual items are separated
by commas. However, if a list literal is not inside another litésafjrst parenthesis must
be preceded by&(as in the above example) to avoid ambiguity.

To access the items in a list, you can usesghbead() and sys.tail() methods. For
example:

sys . head (nums) Il gives 10

sys . tail (nums) I gives (20, 30)
sys . head(sys . tail (nums)) I gives 20

Alternatively, you can use the operator to access list members. For example:
nums[1] I gives 20
You canalso create a listynamicallyusing thesys.pairf) method. For example:

list nums= sys.pair (10, sys.pair (20, sys.pair (30, null)))

Fundamentals 43

The innermost call,sys.pair(20, null) , creates the ligB0) and the outer calls ad
and thent0 in front of this list to produc€o, 20,30) . A much easieway of doing the
same is to use thiet() operator:

li st nums= list (10, 20, 30);

As a rule the end of a list is always marked bywdh (which is also a shorthand for an
empty list) Also, for programming conveniencapplyingsys.head() or sys.tail() to
null - will producenull .

The elements of a list ne@dt be of the same typethey can be anything. For example:

list Is=$(1, "man", "bites", ($animal, "dog"), 3, "times")
Note how the inner list has no precedfdecause it appears inside another literal.

2.7.3 Vectors

The basic type for a vectonisct or . Here is a simple vector literal of three numbers:

vector nums =[10, 20, 30]

Vector literals are always delimited by square brackets, and the individual items are
separated by commas. As with lists, the elements of a vector need not be of the same
type, but you can enforce a specific element type where desirable. For examgibevhe

list is better written as

vector <int >nums =[10, 20, 30];

because it explicitly states thdne elements are expected ® dif typeint . In this case,
should the ector contain a nemteger element, an error will be raised.

You can access an element of a vector using itstzsed index. For example:
nums|[1] I gives 20

Thesys pseudo class provides a number of methods for inserting, removing, and finding
vector elements, as exemplified below.

sys . insert (nums, 2, 25) Ilinserts 25 at position 2

sys . append (nums, 40) Il 'appends 40 to the end of the vector

sys . find (nums, 30) Il returns the index of 30 (ie, 2)

sys . remove (nums, 1, $at) Il removes the el ementat positon 1
sys . member(nums, 30) I gives true

sys . length (nums) I gives the number of elements in the vector

Sys . clear (nums) Il removes all the vector elements

44 JavaGram Agile Development

Let 6s |reatlife example #ghat illustrates the use of both vectad &st. The
following class is intended to capture directions in order to get from one location to
another, in the style: go 5km east, then 7km south, then 12km west, etc. It uses a vector of
lists (calledegs) to capture the individual legs ajourney,where each leg is of the form
(direction, distance)

<jag domain="doc/code/chap2">
class Direction {
vector <list > legs @=vector ();

public void addLeg (symbol dir, real dist) {
sys . append (legs, list (dir, dist);

public real tot alDistance () {
real total = 0;
for (int i =0, n=sys.length (legs); i < n; ++)
total += legs[i][1] @real ;
return total;

public real shortestDistance 0 {
real east = 0;
real north = 0;
for (list leg in legs) {
real dist @=leg[l];
switch (leg[0]@ symbol) {
case $north: north += dist; break ;

case $south: north -= dist; break ;
case $east: east += dist break ;
case $west: east -= dist break ;

}
}
return sys.sqrt (east * east + north * north);
}
public static void main () {
Direction ~ d = new Direction ();
d.addLeg($north, 12.5);
d.addLeg($west, 7. 2);
d.addLeg($south, 2.6);
d.addLeg($east, 20.1);
sys.printin ("Total distance =", sys.format (d.totalDistance(), "0.00km"));
sys. printin ("Shortest ~ distance =", sys.format (d.shortestDistance(), "0.00km"));

}
}

<ﬁag>

ThemethodaddLeg() adds a new leg to the journey by appending a new list to the end of
thelegs vector. The methotalDistance() uses a fotoop to iterate through thiegs

vector and adslup the distance of each leg. A couple of points worth noting ahaut
method:

Fundamentals 45

1 Note how two (commaeparated) local variables are defined for thedop. This is
a useful coding pattern to remember as it avoids the length of the vector being
calculated for each iteration, which would have been the case, had it beehasod
for (int i =0; i < sys.length (legs); ++i)

T When adding t hetll(esgdéthe labp) the \alneciefirst converted
toreal using the type castoperatgr Thi s i s necessary because
un-typed.

This is a good timeo introduce thefor-in loop i a variant of the foft oop t hat 6s
particularly well suited to iterating through a containdsingit, totalDistance() can be
written more elegantly:

public real totalDistance2 0 {
real total = 0;
for (list leg in legs)
total += leg[l] @real ;
return total;

}

A for-in loop must always have a local variable (eleg.) and a container (e.degs).
The latter must be a vector, map, or GUI contaifgch time round the loop, the
variable points to the next container element.

The shortestDistance() method calculates the shortest distance between the start and end

points. ltusesafern | oop and a switch to work out how
and east, and then uses thghRgoras theorem to calculate the shortest distarte.

sys.sqrt() method calculates the square root of a number.

The line before the switch uses t@ieoperator to cast the right side of the assignment to
the type expected by thealue on the left sig, before performing the assignment. This is
more elegant than writing:

real dist =leg[l] @real ;
When executed, the program produces the following output.

Total distance = 42.400000000000006
Shortest distance = 16.260996279441187

These numbers loak little bit ugly (too many decimal places) and have no unit. We can
use thesysformat() ~ methodto limit them to, say, two decimal places and express them
in kilometers:

sys .printin("Total distance =", sys.format(d.totalDistance(), "0.00km"));
sys .print In("Shortest distance =", sys.format(d.shortestDistance(), "0.00km"));

46 JavaGram Agile Development

This will change the outpub something moreserfriendly:

Total distance = 42.40km
Shortest distance = 16.26km

2.7.4 Maps

The basic type for a map ngp. Here is a simplenapthat assoiates peoples name with
their age

map age =['Adam"=>20, "Paul'=>28, "Linda"=>18];

Map literals are always delimited by square brackets, and the pairs are separated by
commas. The keys (e.gA\dam") and values (e.g2p) of a map need not lzdl of the same

type, but you can enfoe a specific key and/or valiigpe where desirable. For example,

the above map is better written as

map<string , int > age =["Adam"=>20, "Paul'=>28, "Linda"=>18];

because it explicitly states that tkeysare expected toebof typesting and the values
of typeint . In this case, should theapcontainany othertype of key or valuean error
will be raised.

You can look up a value in a map using its kegr example:
age|["Linda"] Il gives 18

The same notation cdme used to store a key/value pair in a map, or to overwrite an
existing one:

age['Linda"] = 19 /'l changes Lindabs age to 19
age['Jane"] =30 /ladd s anew key/value pair

The keys in a mamust be atomic, but the values can be anytHingou want to pecify
the type of keys or values but not the other, usevdlpe type (vhich stands for an
unspecified type). For example:

map<symbol , vague > person = [$name=>"John", $age=>22, $male=>true]

In fact, the typemap is equivalent tomap<vague,vague> and vector is equivalent to
vector<vague>

A map whose keys are symbols has some similarity to an object, so JavaGram allows you
to use the dot notation instead]ofto access it. For example:

person.$name /I same as: person[$name]
person.$name = "Alan" Il same as: person[$name] = "Alan"

Fundamentals 47

The sys pseudo class provides a number of methodsu$er with mapsas exemplified
below.

Sys . remove (person , $age) /I removes the $age key and its value

sys . length (person) Il gives the number of elements in the map
sys . member($age, person) I gives true if the key is in the map

sys . mapKeys(person) Il gives: [$age, $male, $name]

sys . mapValues (person) I gives: [22, true, "John"]

sys . clear (person) I removes all the map elements

Internally, maps are maintained ascendinglexicographic key sort order. So, for
example, if you print a map usings.print) , the elements will appear ascendingkey
sort order. Similarlysys.mapKeys() ~returns the keys in ascending sort order.

L e tldbls at a program that demdreges the versatility of map3he following class

scans the file hierarchy in a directory and, for each file, counts the number of lines,
words, and characters. It uses a mapner) to keep track of these statistics for each

scanned file.

<jag domain ="doc/code/chap2">
class WordCount {

map<string , map<symbol , int >> counter ~ @=map();

public void scanDir (string path) {
for (string file in sys.listDir (path)) {
stting filePath = sys. pathConc (path, file);
if (sys.pathProps (filePath)[$type] == $dir)
scanDir(filePath);
else
scanFile(filePath);

}

public void scanFile (string path) {
stream s = sys.open(path, "r");

string line;

int nLines =0, nWords = 0, nChars = 0;

while ((ine = sys.readln (s, false)) != null) {
++nLines;

nWords += countWords(line);
nChars += sys.length (line);

counter[path] = map($lines=>nLines, $words=>nWor ds, $chars=>nChars);
sys . close (s);
}
protected int countWords (string line) {
int n =0
for (string str in sys.strSplit (lne, " ") {
if (sys.length (sys.strTrim (str, true)) > 0)
+Hn;

48

JavaGram Agile Development

}

return n;

public void clear () {
Sys . clear (counter);

}
public void output () {
vector <string > files @=sys.sort (sys.mapKeys(counter));
map<symbol , int > total = map($lines=>0, $words=>0, $chars=>0);
for (string file in files) {
map<symbol , int > count = counterffile];
sys . printin - ($"{file}: lines: {count[$lines]}, words: {count[$words]},
chars: {count[$chars]}");
for (symbol s in total)
total[s] += count]s];

sys.printn ($"Total: ~ lines: {total[$lines]}, words: {total[$words]},
chars: {total[$chars]}");

public static void main () {
WordCount wc = new WordCount ();
wc.scanDir(sys . pathConc (sys . root , "doc /code/chap2"));
wc.output();

}
b
<Uag>

ThescanDirf) method takes the path of a directory as parameter andys$&Bir()
to get a list of all files/directories in that directosys.pathConc() is used to concatenate

the parent directoys pat h with each file/directory na
sys.pathProps() returns the properties of a path as a map which contains, amongst other
things, astype key that points tdfle or $dir |, depending on whether

directory. Fora directory, we callscanDirf) recursively; and for a file we call
scanFile()

To scan a filescanFile() opens the file usingys.open() . The second argument to this

method (") stands for oOread mt@aheadhbuiltimJavaGrammet h o d
type that can be used for I/0O with respect to files, buftdrannet). sysreadin() is used

to read the next line of the file, which it returns as a string. The second argument to this
method indicates whether the eofdline (EOL) character should becinded (set to

false to exclude EOL). When we reach the end of the file, this method reiirnsFor

each line, we increment three local counter variables, which are then used after the loop

to add a new map to tlbeunter map. Finally, we close the sti@ usingsys.close()

countWords) count s the number of words in a |ine.
here: sys.strSplit() splits the line into its spaeseparated subtrings. A substring is
considered a word if after trimming it of blanks it rensanorempty.

Fundamentals 49

Theoutput() method formats and writesehresult of a scan (as denotedtbg counter
map)to standard outpufhe files are first sorted in alphabetic order usiysgort) . A
for-loop is then used to iterate through the files, outpgyttive counters for each file and
at the same time building up totals in thtels map.

For outputting the file count aelayedatingswe | |
A delayed string is like a normal string bsipreceded by & characterFor example:

$'{file}: lines: {count[$lines]}, words: {count[$words]}, chars: {count[$chars]}"

Within a delayed stringanything enclosetly a pair of braces is treated as an expression.
When the delayed string is evaluated, these expressions are uadlividvaluated and
their valuesaresplicedinto the string.

Running this program will produce output similar to the following.

C:/JavaGram/doc/code/chap2/BankAcc.jag: lines: 27, words: 91, chars: 646
C:/JavaGram/doc/code/chap2/Calculator.jag: lines: 53 , words: 173, chars: 1092
C:/JavaGram/doc/code/chap2/Car.jag: lines: 16, words: 53, chars: 296
C:/JavaGram/doc/code/chap2/CarTest.jag: lines: 13, words: 25, chars: 190
C:/JavaGram/doc/code/chap2/Direction.jag: lines: 45, words: 167, chars: 1152

C:/JavaGram /doc/code/chap2/Factorial.jag: lines: 24, words: 87, chars: 420
C:/JavaGram/doc/code/chap2/HelloWorld.jag: lines: 7, words: 16, chars: 115
C:/JavaGram/doc/code/chap2/Prime.jag: lines: 28, words: 96, chars: 557
C:/JavaGram/doc/code/chap2/WordCount.jag: line s: 55, words: 185, chars: 1481
Total: lines: 789, words: 1675, chars: 11467

2.7.5 Object Literals

An unusual feature afavaGram is that it allows class instances to be speeasidterals.

This is useful wheryou want to precreate objects in codéoéd time)to repesent things

such as meta data, rather than during execution (run tirether benefit of this
approach is that it makes it very easy to serialize objects (in order to persiso thdie

or database) and to subsequently parse them (upcevegtiiom thefile or databaseBy

the same token, when you write an object to standard output, JavaGram outputs the object
as a literal, making it very easy to read and understand.

Recall theDirection class presented earlier in this chapter. You casyagrintin() on
the sample object to get its literapresentation

Direction ~ d= new Direction ();
Il...
sys. println (d);

This will display the following:

[@doc\ code \ chap2 \ Direction legs=>[($north, 12.5), ($west, 7.2), ($south, 2.6),
($east, 20.1)]

50 JavaGram Agile Development

Note the similarity to the map literal notation, except that:

1 The qualified class name appears at the beginning preceded I@ctisacterto
specify the object typelhe reason for the qualified rather than short class name is
that this notation nesdo be transportable.

1 Each object field (there is only one helegs) is mapped to its literal value. Unlike
maps, however, the keys are the actual field identifiers, not literals.

Creating objects directly using this notation is easy. For example:
Direction dir=[@ Direction legs=>[($west, 13.1), ($south, 1.9)]];

Wedve used the short <class name here, assum
parsing this code, JavaGram expands the short name to a qualifiedJnatrees vectors

and maps have spial operators for dynamic creation, you can usetib@ operator to

create an object dynamically and directly. For example:

Direction ~ dir= object (Direction ,legs=>[($west, 13.1), ($south, 1.9)]);

If you want to get the string equivalent of an @bjeyou can use thsys.serialize()
method. For example,

stting str= sys.serialize (dir) ;
sebstr to:

" [@doc\ code \ chap2 \ Direction legs=>[($west, 13.1), ($south, 1.9)]]"

Where explicit parsing is required (e.g., after reading an object literal feysistent
storage), you can use th@aparse() method. For example,

Sys . parse (str)

returns the original objecthe Object library class (described in Chapter)li3ses this
approach for managing the persistence of business objects. See also the sample
application (in Chapter 8) for a relifie example of how persistent business objects are
utilized.

When writing an object literal, you can leave any of the class fields unspédcitiese
are automatically set tall .

For efficiency and convenienceavhGram uses a very direct method to manage the
creation of object literals. This means that class constructors (if any) are bypassed.
Therefore, if your constructors enforgmportantinvariants or perform vital resource
management, these will not tailace andemain your own responsibility.

Fundamentals 51

2.7.6 Literal versus Dynamic

As we 0 vcempasikedata ¢can be specified either bterals or created dynamically.
So whatos the difference?

The key differenceis creation time. Literals are created when the codehithwthey

appear isloaded (i.e., gpars® and Ganalyzé s taecprding to the diagram at the

beginning of this chapter)Dynamic data is created during the course of program
execution(i . e., Oeval uat e 6 Asdrespltjiterals atecheatedordyme di ag
once,becauséheir code is loaded only oncghereas dynamic data is created every time

the corresponding code is executdthis is a subtle difference that can be easily
overlooked by newcomers to JavaGram, with potentially dire consecuelhces

somewhat similar to programmers confuding behavior oftatic and nosstatic data.

Both these forms have their legitimate place in JavaGram programming, so you must be
mindful of using the appropriate form for a giv@tuation

L et 0 sateithe Hifftesenice (and consequences of misuse) using an exeegdd.the
definition of thewordCount.output) method:

public void output () {
vector <string > files @=sys.sort (sys.mapKeys(counter));
map<symbol , int > total = map$lin es=>0, $words=>0, $chars=>0);
Il...

}

Thetotal map in this method is created dynamically. What would happen if we change
this to a map literal?

public void output () {
vector <string > files @=sys.sort (sys.mapKeys(counter));
map<symbol , int > total = [$lines=>0, $words=>0, $chars=>0];
Il...

}

Running this versiomwill produce the same result as before. However, a subtle defect has
been introduced. If you calltput() multiple times in the same run, the counterstah

will not start from zero, but will retain their value from the last call ottput()
Remember, a literal is created once at load time, so in each catlut) , total is set

to refer to this same map, not axneopy, causing alteratisimade to it in the previau

call to be retained!

When literals are misused, the resulting defecight not be immediately obvious and
could require further testing to detect. Literals are generally safe and recommended for
these situations:

1 Readonly data

52 JavaGram Agile Development

1 Meta data

1 Persistence

2.8 Exception Handling

Webve alreadyassete ®atementocan bé lhised to impaseariants
(conditions that must hold). However, assertions have limited flexibility in that any
violation is reported as an error, with no further opportunity to handleethsr.
Therefore, its use should be limited to scenarios where you want to guard against blatant
misuse.

There are other potential error situations that do not represent misuse but rather possible
set of circumstances that deserve to be detected arefighatandled. These are called
exceptions A simple example of this would be dealing with an invalid postcode in a
postal address. JavaGram provides an exception handling facility for such situations.

Let &0s |l ook at a n WordCounesaamp lile@ . mefRaddraml dn earliare
example in this chapteThis method does not cater for agutial error situation: what if
the file is not accessible for reading? In this case, the meghaan() will fail, causing

a runtime failure of the prograrfio cder for this situation, we can rewrite timeethod as
follows.

public void scanFile2 (string path) {
stream s = null ;

ty {
S = sys.open(path, 'r");
string line;
int nLines =0, nWords = 0, nChars = 0;
while ((line = sys.readin (s, false)) !'= null) {
++nLines;
nWords += countWords(line);
nChars += sys. length (line);
counter[path] = map($lines=>nLines, $words=>nWords, $chars=>nChars);

catch (Exception e) {

sys.printin (sys.err, "Can't read file: ", path);
}
finally — {
if (s !'= null)
sys . close (s);
}

}

We 6 v e uyscatch-finally statemat to detect such an exception and deal with it.
The effect of this is that the statements in tthe block are evaluated. If an exception
arises, theatch blocks following it are examined. The firstch block whose exception
type matches the raised exytion is executed. Thénally block is executed last,

Fundamentals 53

regardless of whetihhean exception arises or not, aeden if areturn statement is
executed.

Not e how we 6 vstond ebefore weentes thigy dlack If thesys.open()

call succeeds #ns gets set to a valid stream. Otherwise, an exception is throws and
will remainnull . Therefore, thénally block will only attempt to close the file sfis not

null . This simple code pattern ensures that there is no possibility of this methaayleavi
the file open due to an error.

Within thecatch block, we simply report the fact thtkte file is not readable by writing a
message to standard erspsarr .as tieditsteargdhmenw towe 6 v e
sys.printin() . The former is a predefined stra and denotes the standard error stream.
JavaGram provides three predefined streams:

1 sysout denotes the standard output stream (usually associated with the screen).
1 syserr denotes the standard error streafsqusually associated with the screen).

1 sys. in denotes the standard input stream (usually associated with the keyboard).

In our earlier uses adys.printin() , we never referred to any o
when no stream in specified, output methods sudpsasntin() assume the standard
output stream. So, for example:

sys. printin ~ ("Hello") Il'is equivalent to: sys.printin(sys.out, "Hello")

A catch block must always have a signature simidaa method of one parameter, which
must be of typeException or a subclass ofException (subclasse are described in the
next chapter).

Exception is a predefined JavaGram class, having the following definition.

class Exception {
protected string message;
public Exception () {}
public Exception (string msg) {message = msg;}
public string getMessag e (){ return message;}

}

As well as the exceptions raised by JAG (e.g., division by zero), the programmer can
detect error situations and throw an explicit exception. To do this, create an instance of
Exception andthrow it, for examplelike this:

t hro w new Exception (“invalid postcode");

The gener al rule I s that when a method thr o\
calling code to catch and deal with that exception

54 JavaGram Agile Development

Once an exception has been caughytfurthey a
However, smetimes it makes sense to do something in a catch block in response to an
exception and then faropagate it by throwing again. For example:

catch (Exception e){
I/ Do something
throw e;

}

In general, theatch block andthefinally block of atry statement are optionaleither
may be absent but not both! Also, you can have multgde blocks, each responsible
for catching and handling a different type of exceptiore ldiscuss this further after
we 0v e | mlessinhatitancesinthe next chapter.

Fundamentals 55

catc

3 Object-oriented Programming

Classes were introduced in the previous chapter. This chapter builds on that foundation
and describes how classes can be extended to take advantage of object oriented (OO)
features such as inheritance and polymorphiSimple pogramming examples are used

to illustrate the application of these concepts.

3.1 Inheritance

Think of a program that deals with geometric shédpkses, rectangles, ovals, polygons,
etc.Each of these can be represented by a class. Many methods would benctnath

these classes, such dasw() , move() , resize() ,fill) . Simplistically, we can implement

each shape using a separate class, but later on when we start using these classes, a
recurring annoyance emerges: in order to do something to a shapegavi® rknow what

type of shape it is.For example, supposthat we have aCanvas class that can
accommodate multiple shapdégvingadraw() method that draws the whole canvas by
drawing each shape:

class Canvas {

vector <object >shapes @= vector ();

. .

public void draw () {

for (object shape in shapes){
switch (typeof (shape)){

case $Line: shape@ Line .draw(); break ;
case $Rectangle: shape@ Rectangle .draw(); break ;
case $Oval: shape@ Oval .draw(); break ;
case $Polygon: shape@ Polygon .d raw(); break ;

}

There arghreeproblems with this design:

1 The coding ofCanvas method, such asiraw() , becomes quite tedious, requiring a
switch to handle each shape type separately.

1 Adding a new type othape (e.g.PolyLine) will require changes to many of the
Canvas methods to cater for.ifThis could involve significant effort and is potentially
error prone.

1 There are likely to bdields andmethods with identicatlefinition for each shape
(e.g.,color andgetColor()). These would need toe redefined for every shape class,
resulting in unnecessary duplication of code.

56 JavaGram Agile Development

Inheritance provides an elegant solution to this problem, allowing us to write the common
parts once and override those methods that are specific to each class.

When desig i n g

cl asses,

it 6s

usef ul

t o

Vi

sual

notation such as UML. The following UML diagram shows how we can organize our
shape classes to take advantage of inheritance.

In UML, each class is represented bipax divided into three part$ the top part bears

Canvas

+draw (): void

K>—shapes——>

Shape

-color: string

+draw(): void

+move(x:int, y:
+resize(x:int, y:int): void
+fill(color:string): void
+getColor(): string
+setColor(color:string): void

int): void

Line

Rectangle

Oval

Polygon

+draw (): void
+move(x:int, y:int): void
+resize(x:int, y:int): void

+draw (): void
+move(x:int, y:int): void
+resize(x:int, y:int): void
+fill(color:string): void

+draw (): void
+move(x:int, y:int): void
+resize(x:int, y:int): void
+fill(color:string): void

+draw (): void
+move(x:int, y:int): void
+resize(x:int, y:int): void
+fill(color:string): void

the class name, the middle part lists the class fields, and the bottom part lists its methods.
Shape is an abstract class (hence appearing in italics). Abstract classes cannot be
instantiated, but rather serve as igeselements that other classes can extend. The
directed line from the&€anvas class to theShape class represenggregation implying
thatCanvas canrefer tomultiple shapesrThe directed line from each of the bottom classes

to the Shape class represesinheritance, implying that these classes inhanembers

(fields and methods) from ti8hape class.Because the bottom classes can be instantiated

t heydr e coasated

to be

In this diagramgShape is said to be ®aseclass (also called super clasg. Each oftine ,
Rectangle , Oval , andPolygon is said to be aerived class (also called subclas$.

The symbol appearing before each member denotes its visibility:

T

- stands for private

i # stands for protected

1 + stands for public

The methodslraw() , move() , andresize()
italics). This means that their definition is deferred to a derived class. Each of the four
derived classes provides its owmplementationof these methods. The remaining

are defined as abstract $hape (appearing in

Object-oriented Programming

57

z

e

methods and fieldsf&hape are inheritedas i®by the derived classes, except ffitfy
The latteris overridden by theD shapes and ignored bige .

Given this designianvas canbedefinedmuchmore elegantly.

class Canvas {
vector <Shape> shapes @= vector ();
Il...
public void draw () {
for (Shape shape in shapes)
shape .draw();

}

Becauseshape is the base class for all shapes, we can din@wanvas by simply iterating
through its shapes dam)dmethadvwahout negding @ &iow s hap e o
whattype of shape it is. JavaGram resolves thesbalk.draw() at runtime and invokes

the daw() method of the relevant concrete cla3ferefore,draw() is said to be a

polymorphic method.

3.2 Shopping Cart Example

This sectiondescribes a fairly complete exalmpof how inheritance can be used to
develop an OO solution to a problem. The problem is one of developing a shopping cart
for an online store.

First we need a representation of a customer visiting the store. Fowthi® | | use a
minimal classas this § not the focus of our discussion.

class Customer {
protected getable string name;
protected getable string address;
..
public ~ Customer (string name, string address) {
this .name = name;
this .address = address;

}

Thegetable qualifier deserves some explanation. A common coding pattern is to define a
get method (e.g.getName()) for private and protectefields of a class that need to be
accesed bythe classusers Rather than defining such a method explicitly, yam use
thegetable qualifier to instruct JavaGram to define it implicitbavaGram generates the
following hidden method for theame field.

public string getName () {
return name;
}

58 JavaGram Agile Development

There is also setable qualifier whichgenerates a hidden methau §etting the value of
a field etable also impliesgetable , Sso you donodt lfeseddonthedo s peci
name field, JavaGram wilklsogenerate the following hidden method.

public void setName (string name) {
this .name = name;
}

The online st of fers a range of products for s al
represents all products.

abstract class Product {
protected getable string id; /I Unique product ID
protected getable real price; /I Unit price is dollars
protected get able real weight; // Unit weight in kilograms

abstract public string format ();
public void ship (int quantity) {

Catalog . singleton .ship(id, quantity);
}

}

The abstract ~ qualifier appearing before the class definition mankguct as abstract,

i mplying that this c| aEashproduct@dasunitue numericst ant i at
ID, a price (expressed in dollars), and a weight (expressed in kilograhesformat()

method is intended to produce a string representation of the gbrothis method is

defined asabstract and therefore has nanplementationi the implementation is

deferred to subclasseBhe ship() method causes a given quantity of the product to be
shippedWe 6 | | di scuss the i mplementation of this

let 6s now consider some r e aGadgetpand répresenta . The f
manufactured piece of equipment (such as an iPod).

class Gadget extends Product {
protected getable string make;
protected getable string model;
protected get able int year; /I Year of manufacture

public string format () {
return $'{id} {make} {model} {year} @fsys.format (price, ShopCart . MONE)";
}

}

Note howGadget is derived from Product , using the keyworextends . This causeSadget

to inherit everything defined iProduct . The fields defined iGadget are in addition to the
fields defined inProduct . Any methods defined in the subclass are either in addition to
the base class, or override the ones in the base class. In thisveaBaye onesuch

Object-oriented Programming 59

method,format() , which provides an implementation of the same abstract method in
Product . This method uses a delayed string to format its return value. The last expression
in this string usesys.format() to format the price of a gadgéshopCart MONEY is a
defined constant in another clasbhis all effectively resolves to this:

sys . format (price, "$0,000.00")

The format string (the second argument) capdes to be formatted as a dollar figure to
two decimal places, with every #e whole figures comma separated. For example,
12000.45267 will be formatted a$12,000.45

The next product type Book.

class Book extends Product {
protected getable string author;
protected getable string fitle;
protected getable string publisher;
protected getable int year; /I Year of publication
protected getable string isbn; Il 1SBN

public ~string format () {
return $'{id} {author}, ({title}, {publisher} {year}, ISBN ({isbn} ~ @{ys. fo
rmat (price, ShopCart . MONE}";
}

}

Like Gadget , Book is a subclass dfroduct and has a similar definition.

The third and final product type to discuss here is an electronic book. Be&@aoisés

really a book, we 0 vBeok.uetiermoredlicaptute itdagditisnalb c | a s s i
behavior (i .e.., the fact t hat itéds electro
subclassed it from another claBswnloadable . This is calledmultiple inheritance.

class EBook extends Book, Downloadable {
public real getWeight () {
return 0.0;

public ~sting format () {
return super @ook.format() + super @ownloadable .format();

public ~ void ship (Customer cust, int quantity) {
create(id, $'{cust.getName()}: {quantity} copies");
}

}

EBook overrides three methods from its base clasgeseight) is overridden to return
zero, because an ebook is not a physical entity. Notefévoa() invokes the same
method from both base classes. The keywspdr refers to a base class. Hever,

60 JavaGram Agile Development

because there are two base classes, we uadl teeocast operator to indicate which
particular base class webre referring to
base classfFi nal | y, we 06 v e sha(l snethoo sodhathneidowthleadablé h e
file is generated by this methodlhe create() method is defined irthe Downloadable

class.

mutual class Downloadable {
protected string url; /I 'URL to download from

public void create (string prodld, string wate rmark) {
url = Catalog . singleton .createDownloadableFile(prodlid, watermark);

public string format () {
return ul == null ? "™ : $ (url);
}

}

Themutual qualifier means that this class wié treated just oncep matterhow many
times it appeain aderivation hierarchy (more on this the next section The create()
method refers to another classtalog , defined below.

Having defined all our product types, we can now define the class that represents the
shopping car

class ShopCart {
public ~static final sting MONEY= "$0,000.00";

protected static int lastCartld =0 /I Last allocated cart ID
protected int cartld; /I Unique cart ID

protected map<string ,int > items @=map(); /I Product ID => quantity

protected ~ Customer customer; /I The customer who owns the cart
protected real totalWeight; /I Total weight of cart items
protected real totalCost; /I Total cost of items

public ~ ShopCart () {
cartid = ++lastCartld

public ~ void additem (string id, int quantity) {
items]id] = quantity;

public void checkOut (Customer cust) {

customer = cust;

totalWeight = 0.0;

totalCost = 0.0;

for (sting id in items) {
Product prod = Catalog . singleton .getProduct(id);
totalWeight ~ += prod.getWeight();
totalCost ~ += prod.getPrice() * jtems]id];
prod.ship(items]id]);

Object-oriented Programming 61

(t

totalCost ~ += shippingCost (totalWeight);

public ~static real shippingCost (real weight) {
return weight * 5.5;

}
public void displayInvoice 0 {

sys. println ~ ("Customer: ", customer.getName());
sys.printih ("Address: ", customer.getAddress());
sys. println ("Order:");

int idx =0

for (stting id in items) {
Product prod = Catalog . singleton .getProduct(id);
sys.print (++dx, . ", prod.format(), "ox " items|id], S
sys. println ~ (sys . format (prod.getPrice() * jtems]id], MONE;

}
sys . println - ("Shipping: ", sys.format (shippingCost (totalWeight), MONEY);
sys.printh ("Total: ", sys.format (totalCost, MONE);

}

EachShopCart instance is allocated a unique kar{d) thais generated by incrementing
lastCartld . The items in the cart are captured by ittres map, which maps selected
product IDs to their purchase quantity. Tdugtomer , totalWeight , andtotalCost fields
are setluring the check out process.

Items are added to the cart using dhditem() method. Theheckout() method iterates
through the cart items, works out total weight and cost, and ships each item. The shipping
cost is calculated by thsippingCost) ~ method whose value is added to the total cost.

displaylnvoice() outputs the customer details, selected items and their quantities and
cost, shipping cost, and total cost. Note the use of the polymorphic niethagl in

this method. The design ensures thafwdure product types are added, there will be no
impact on theShopCart class.

TheProduct andShopCart classes refer to another class calletdiog . The latter provides
an upto-date catalog of all prodtsavailable in the online store.

singleton ¢l ass Catalog {
protected static int lastDownloadld = O;
protected string file;
protected map<string , Product > products @=map(); // Product ID => Product details

protected map<string ,int > stock @=map(); /I Product ID => quantity in stock
public ~ Catalog (string file) {
this .file = file;
stream s = null ;
ty {
s = sys. open(file, ™),

vague data = sys.eval (sys.read (S));

62 JavaGram Agile Development

if (I(data instanceof vector <list >))

throw new Exception(file + " has invald format");
for (list pair in data@vector <list >) {

Product prod @= pair[0];

int quantty — @=pair[1];

products[prod.getld()] = prod;
stock[pro d.getld()] = quantity;
}
}
finally — {
if (s != null)

sys . close (s);

}

public void save () {
vector <list > data @=vector ();
for (string id in products)
sys . append (data, list (productsfid], stock(id]));
stream s = null ;

ty {
s = sys. open(file, "W");
sys.ppln (s, data);
}
finally {
if (s != null)
sys . close (s);
}
}
public void displayCatalog 0 {
sys. println ~ ('sys . length (products), " products in catalog:");
for (vague id in sys.sort (sys.mapKeys(products)))

sys. println (products]id].format(), " (", stock[id], " available)");
sys. printl - n();

}
public ~ Product getProduct (string id) {
return products|id];

public int inStock (string prodid) {
int quantity = stock[prodid];
return quantty == null ? 0 : quantity;

}
public void ship (string prod Id, int quantity) {
if (inStock(prodid) < quantity)
throw new Exception(prodid + " short of stock";

stock[prodld] - = quantity;
public string createDownloadableFile (string prodld, string watermark) {
string url = $'https://www.acme.com/download/{prodid} {++ lastDownloadld

/I TODO: create a PDF file for the product denoted by prodid, where
Il each page is watermarked with the string denoted by watermark.
return url;

Object-oriented Programming

}

This class is defined asingletoni JavaGram will ensure that no more tlwreinstance

of this class willexist in a running procesSingleton is a commonly used design pattern,

so JavaGram provides direct support for it. You can refer to thamhenly inseance of

a singleton class usinthe Class.singletonnotation (e.g.,Catalog.singleton). If no

instance exists yet, JavaGram will create one for you. Otherwise, it will just return the

existing instanceMo st si ngl et on <c¢cl| assegordadvdahdefaut dondt
constructor (i.e., one with no parameters). This enables JavaGram to create an instance

i mplicitly. Where a singleton classbés const
must create the instance exethis foritheChtalpg. We 6| |
class.

In a real applicationCatalog and ShopCart would store their data in a database. For
simplicity however, webve chosen to store tI
is passed to the constructor. The assuroeddt for the file is that it contains a vector of

lists, where each list consists of a product and its quantity in stock. The constructor reads
thedata from this file, checks that itdés a v
populate theproduct s andstock maps. Note the use ofs.read() for reading the file

data. Unlikesys.readin() ~ which reads data textually, line by lirsgsread() reads valid

JavaGram expressions. We pass thissykeval() to also perform any necessary

evaluations, thouglhis is not really necessary in this case, as the data is expected to

consist of literals only.

The save() method writes the data back to the file, ensuring that any changes (new
products added, changed quantities) @eemanentlysaved.The ship() methodsimply
reduces the stock quantity for a product as a result of a purchase. The
createDownloadableFile() method is intended to generate a PDF file for a given digital
product, where each page bears a waternitariturns the URL of the generated file.

A sample catalog file is shown below to illustrateititendedformat.

Catalog.jag

[$(@ Gadget id=>"GM001", price=>249.0, weight=>0.14, make=>"Apple", model=>"
iPod classic 120GB", year=>2009], 10)

$(@ Gadget id=>"GM002", price=>399.0, weight=>0.115, make=>"Apple", model=>
"iPod touch 32GB", year=>2009], 10)

$(@ Gadget id=>"GM003", price=>149.0, weight=>0.0368, = make=>"Apple", model=
>'iPod nano 8GB", year=>2009], 5)

$(@ Gadget id=>"GM004", price=>199.0, weight=>0.0368, = make=>"Apple", model=
>"iPod nano 16GB', year=>2009], 12)

$(@ Gadget id=>"GM005", price=>79.0, weight=>0.0107, make=>"Apple", model=>
"iPod shuffle 4GB", year=>2009], 30)

$([@ Book id=>"PB001", price=>35.0, weight=>0.45, author=>"Peter Black", tit
le=>"Famous Gardens", publisher=>"Lighthouse", year=>2002, isbn=>"0 -212-
17625-9", 18)

64 JavaGram Agile Development

$(@ Book id=>"PB002", price=>40.0, weight=>1.04, author=>"Mary Adams", fitl
e=>"Art of Sewing", publisher=>"Acme House", year=>2006, isbn=>"0 -143-12231-

2], 15)

$(@ EBook id=>"EB001", price=>12.0, weight=>0.0, autho r=>"Jane Cornwall", t
itle=>"Child Psychology", publisher=>"Canyon", year=>2008, isbn=>"0 -254-
19826-6", 10)

]

The final class talescribe irthis section is a simple test driver for the earlier classes.

class OnlineStore {
static {
new Catal og(sys. pathConc (sys.root , "doc/code/chap3/Catalog.jag"));
}

public statc void main () {
Catalog . singleton .displayCatalog();
ShopCart cart = new ShopCart();

cart.addltem("GM003", 1);
cart.addltem("PB001", 2);
cart.addltem("EB00L", 1);

Customer cust = new Customer("John Smith", "5 Victory Dr, Blacktown, Wind
sor 768872 -24";

cart.checkOut(cust);

cart.displaylnvoice();

}

The static block defined in this class deserves some expianaBometimes there are
initializations that you want to perform before any class instance is created. A static block
provides a way of doing this. Code appearing in a static block is executed (only once)
when the class is loadefou can have multiple atic blocks in a class. These are
executedn the order in which they appear.

As states earlier, becausitalog is a singleton class whose constructor takes a
parameter, its instance must be created explicitly. The purpose of this static block is to do
justthatNot e t hat we don6t need to assign this i
subsequently refer to it &atalog. singleton

Themain() methoddisplays the catalog;reates a shopping cart, adds three items to it
from the catalog, adds a custer, performs a check qund displays the invoice.

To summarize the class hierarchy for this program is presented below as a UML
diagram.

Object-oriented Programming 65

OnlineStore

ShopCart Catalog

-cartld: int

-items: map<string,int>
-totalWeight: real
-totalCost: real

-stock: map<string,int>
-file: string
-stock: map<string,int>

+Catalog(file:string)

+save(): void

+displayCatalog(): void

+getProduct(id:string): Product

+inStock(prodid:string): int

+ship(prodId:string, quantity:int): void

+createDow nloadableFile(prodid:string, w atermark:string): string

P

+additem(id:string, quanitity:int): void
+checkOut(cust:Customer): void
+shippingCost(): real
+displayInvoice(): void

Customer

products
-name: string *
-address: string |
Product
-id: string
-price: real
-w eight: real

+format(): string
+ship(cust:Customer, quantity:int): void

;R

Gadget Book
-make: string -author: string —

. H _title* H «mutual»
“model: string e: string Downloadable
-year: int -publisher: string

- stri -year: int -url: string
+format(): string -isbn: string

+format(): string

+create(prodld:string, w atermark:string): void

+format(): string

EBook

+getWeight(): real
+format(): string
+ship(quantity:int): void

When run, the programproduces the following output.

8 products in catalog:

EB001 Jane Cornwall, Child Psycho
available)

GMO01 Apple iPod classic 120GB 2009 @$249.00 (10 available)
GM002 Apple iPod touch 32GB 2009 @$399.00 (10 available)
GMO03 Apple iPod nano 8GB 2009 @$149.00 (5 available)
GMO004 Apple iPod nano 16G B 2009 @$199.00 (12 available)
GMO05 Apple iPod shuffle 4GB 2009 @$79.00 (30 available)
PBO001 Peter Black, Famous Gardens, Lighthouse 2002, ISBN 0
(18 available)

PB002 Mary Adams, Art of Sewing, Acme House 2006, ISBN 0
available)

logy, Canyon 2008, ISBNO - 254- 19826 - 6 @$12.00 (0

-212-17625-9 @$35.00
- 143- 12231 -2 @$40. 00 (15
Customer: John Smith

Address: 5 Victory Dr, Blacktown, Windsor 768872 -24
Order:

66 JavaGram Agile Development

1. EB001 Jane Cornwall, Child Psychology, Canyon 2008, ISBN 0 -254-19826- 6 @$12.00
(https:/iwww.acme.com/download/EB001_1.pdf) x 1: $12.00

2. GM003 Apple iPod nano 8GB 2009 @$149.00 x 1: $149.00

3. PB001 Peter Black, Famous Gardens, Lighthouse 2002, ISBN 0 -212-17625-9 @$35.00
x 2: $70.00

Shipping: $2.68

Total: $233.68

3.3 Mutual Classes

Recall how thebownloadable class in the previous section was defined as mufins is
a necessary and important consideration when using multiple inherifdrere. are two
basic rules regarding mutual classes:

1 Where a derived class has multiple base classes, at most one of them can be non
mutual.

1 All the base classes of a mutaddss (if any) must also be mutual.

These rules allow JavaGram to layout the fields of a derived class instance in a
predictable manner and, at the same time, adaglication of field instances where a
class participates multiple times in a derivatioerérchy. Sounds confusing? d.t 6 s
clarify the point usingan example.

«mutual»
NetworkNode
-location
-bandw idth
«mutual» «mutual»
Transmitter Receiver
-carrier -channels

N

Transceiver

Consider two mutual class&snsmitter ~ andReceiver that extend another mutual class
NetworkNode . A Transceiver i s a devi ce capable of transmiss
defined as a derivation dfransmitter ~ andReceiver . In OO programming, thigind of

class hierarchiys called thedreaded diamond problem, because @reates a problem for

the programming language in two respects:

1 How to layout the fields of an instance ®©&nsceiver in memory, given that
NetworkNode 6 s f i éffectively imherieed twice

f How to resolve a cal/l t T@ansmiéter nmemdRdeemed . t hat 6 s d

Object-oriented Programming 67

JavaGram addresses the first issue by ensuringhthatatter how many times a super
class is inherited by a subclass, its fields will appear only once in an object of the
subclass. So in the above examplansceiver ~ will have four fields, not six.

To address the second problem, JavaGram requires that you explicitly cast to the intended
base class when making such calls (as was exemplified iEBthieformat() method of
the previous section).

3.4 Final Qualifier

Sometimes itdos desirable to prevent a <cl ass
security concerns, efficiency consideratiomsdesign constraint3.o do this, we simply
use thdinal qudifier when defining the class.

A simple example would be @ser class in a security module that controls access to a
system.

final class User {
Il...
public void login (string username, str ing password) {
...
}

}

The intent here is tprevent someonfom subclassingser and overriding theogin()
methodin order toavoid authentication.

This qualifier can also be used at a method level, so a similar way of enforcing the above
measue would be to define the class as:

class User {
Il...
public final void login (string username, string password) {
Il...
}

}

In this case, the class can be extended buéghg met hod canét be overri

3.5 This and Super

When dealing with classesd inheritance, two keywords can comehandy:this and

super. We dbve already tdheanm iurset amceesard i er examg
their role and use her&ecause both these refer to an instance of a class, it would be
mearingless to tryto use them istatic method

In the implementation of a nestatic method, we can ugies to refer to the implicit
class instance on which the method is invoked. We typically do this to avoid ambiguity.

68 JavaGram Agile Development

The most common case is when you have a methoahypeter or local variable that has
the same name as a class field. By usinghigefield notation, weavoid this ambiguity
andmake our intention cleaAnother less common use is to invoke a constructor from
another constructor. For example, in

class Point {

int X,
public Point () {
this (0, 0);

1

public Point (int x int y){
this x=x;
this .y=y;

}

The first constructor uselds to call the second constructor, and the second constructor
useshis to overcomethe ambiguity of fieldand parameters having the same name.

The super keyword is only meaningful in a derived class, and can be used to refer to a
base class/Vhen there is only one base class, the intention is clear. However, when there
are multiple base classes, explicittoag must be used to overcome ambiguity.

Earlier we saw an example of this in #Beok.format() method:

public string format () {
return super @ook .format() + super @ownloadable .format();
}

BecauseBook has two base class both of which have @armat) met hod, wedbve us
explicit casting aftesuper to nominate the desired class to which the call should resolve.

3.6 Method Parameters

Sometimes it makes sense to define more thar
We saw an example of this in th@evious section for th€oint class, wherewo

constructors are provided.hib is calledmethod overloading and can be applied to

constructors as welbs any other methodHere is another example:

class DataCache {
map<symbol , vague > cache @= map();
public void add (symbol key, vague data){
cache[key] = data;

publicvoid ~ clear () {
sys . clear (cache);

1
public void clear (symbol key){

Object-oriented Programming 69

Sys . remove (cache, key);

public void clear (vector <symbol > keys) {
for (symbol key in keys)
sys . remove (cache, key);

}

This class providethreeclear) methodsi one that clears the entire cachaotherthat
clearsa specific item from the cache, and a third that sleaultiple items from the
cache.

Another way of making a method more véilsais to give itdefault arguments For
example, the two constructors for fent class can be written more elegantly as one:

class Point {
int X,
public Point(int x=0, int y=0){
this x=x;
this .y=y;

}

Given this definition, théollowing constructor invocations are all valid:

Point pl= new Poaint (); IIx==y==0
Point p2= new Point (10, 20); IIx==10,y==20
Point p3= new Point (10); IIx=="10,y== 0

In other words, where tmailing argument is not specified,dldefault value is useds a
general rule, all default argument values must be trailing.

Similarly, we can combine the first twbataCache.clear() methods using a default
argument:

public void clear (symbol key= null){
if (key==null)
sys. clear (ca che);
else
sys . remove (cache, key);

}

However, this is not recommended as it will not improve the clarity of the. diue
recommendedule of thumb is to use the style thaliders the mostlarity.

70 JavaGram Agile Development

3.7 Class Variables

An unusual but handy feature of J&ram is that class names can be used as values, and
therefore assigned twaluesor passed as argumsrid methodsWhen you do this, the
correspondingvalue must be of typevague . An actual example of this occurs in the
EventInitiator classof lib/lang/ Eventjag standard library scripta snippet of which
appears below.

mutual class Eventlnitiator {
protected map<symbol , vector <EventListener >> eventMap @=map();

public void addListener (vague eventClassName, EventListener listener) {
symbol eventName = typeof (eventClassName);

vector <EventListener > listeners = eventMap[eventName];
if (listeners == null)

eventMap[eventName] = listeners @=vector ();
sys . append (listeners, listener);

}

Here, he first parameter odddListener() is intended to be an event class name. For
example, given &8in dEvent class wecould writesomething like this:

Eventlnitiator editor;

EventListener screen:;

...

editor .addListener(BindEvent , screen);

Note howaddListener() ~ uses theypeof operator to convert the class name to a symbol.
This operator retusthe qualified class name as a symbol.

You can also get the qualified name of a class as a symbol using the notation
ClassName.symbdgfor example Point. symbol). But note thatypeof and.symbol serve
completely different purposésthe former operates on an expression, whereas the latter
is applied directly to a class name.

Finally, given an expression that evaluates to a class instance, you can usetihie nota
expr.classto get its class name. For exampleptifis of typePoint thenptclass gives
Point as avague value.

Object-oriented Programming 71

4 GUI Programming

Modern applications are generally expected to have a Graphical User Interface (GUI)
designed with intuitiveness and ease of use in m@idls, however, tend to be code

intensive due to complexities such as event handling, data bindingediefor flexible

navigation paths, and so o@®ne of the design goals of JavaGram is to substantially

reduce this complexity by offeringgdeclarative style of programming as opposed to the

procedural style of established GUI frameworks and librarieb suas Javads Swi
JavaGrambés promise is that youol l write a
readableand considerably easier to test, making the language particulelthguited to

rapid prototyping andgile development

4.1 Demo Application

Toill lustrate the many GUI el ements to be cov
application that we o1 | gradually build wup
business functionality behind this application other than showing how to code different

types of elements and manipulate their propertiege first cut of this application

(DemoApp.jag) is shown below.

<jag domain="doc/code/chap4">
<load >
"lib/gui/GuiApp"
</load>
singleton class DemoApp extends GuiApp {
<App app lookAndFeel=$windows>
<Frame frame title="Demo App" width=550 height=400 event=frameHandler />
</App>
public DemoApp () {
super (frame);

protected void frameHandler (native comp, symbol event) {
if (event == $close)
exit();
}

public statc void main () {
DemoApp singleton .run();
}
}

<l/jag>

The easiest way to define a GUI application is to subclassbduéGuiApp library

class, which is what wedve done here. Singl
GUI applications because many of the visual components tend to have singleton
behavi or . \dbedppas a sihgldtoifontkisdreason

72 JavaGram Agile Development

In JavaGram, GUI elements are defined using a markup notation. Such markups are
defined inside classes and behéike class fields.The <App> element represents a GUI
application. The identifiespp names the element so that subsequently we can rdfe to
element using this identifier. For elements that appeifwieatame el as class fields and
methods (called Gl class membery this is mandatory. For nested elements (such as
<Frame> in this example) this is optional, so we name these only when we actually need to
refer to them elsewhere in the code.

GUI class members can haary of thequalifiersallowed for felds except forgetable
andsetable . For example, you can specify a GUI member tordiected static

Each element type accepts a certain set of properties. These praertigsed andan
be set either at the time of defining the element or latewithin the code of a method.
For <App>, f or i nst anlookéndreel woropertye tosingovts . This causes the
application to assume a Microsoft Windows look and feel.

Many of the GUI elements are containers, allowing you to define your GUI as a
hierarchy. For e xFamerpriside<Appxw €hé forener defiries anneath
frame for the application.

Some elements support event handlers. é&rent handler is a method with a
predetermined signature that gets called by JavaGram when the tefep®wves certain
events.Event handlers are always defined usingedieet property, which is set to the
name of the method that handles the events (ergeHandler () in the above example).
An event handler always takes two parameters: cthhe paraméer is set to the
component that has raised the evéint this case the frame itselfand theevent
parameter is set to grmbol that represents the event (ebgose). The reason for having
the first parameter is that you can have multiple elementsglthe same event handler,
SO you can examinemp to determine for which element the event has been raBed.
eventHandler() here is quite simplé when the event i$close (which is raised when the
user clicks in the close box of the frame), it exigte application by calling theit()
method of the base class.

GUI Programming 73

|| Demo App - TR ol |

Themain() method boots the application by calling thg) method of the base class,
causing thaboveto be displayed.

As we introduce other elements in the course of this chaptdrirée to look them up in

Chapter 11to find out more about their properties. Element types form a hierarchy,

whereby one element type inherits the properties of another. As with classes, some

el ement types are abstr ac yourcade thgyoserve@aa n 6t ac
abstractions for capturing common properties and behaviorgeneral, however,

element types are not classes you should be mindful not to treat thensash

4.2 Panels, Layouts, and Fields

Let 6s extend o0 uraddihganabbedpanretoithe anain fame. Foynow,
webll add just one tab page that represents

<App app lookAndFeel=$windows>
<Frame frame ftitle="Demo App" width=550 height=400 event=frameHandler>
<Pane.tabbed tab s lay=$center>

<Tab title="Person" image={ sys . use ("lib/gifs/Person.gif")}>
<Indirect ref={ PersonPanel . singleton .panel} />
</Tab>
</Pane>
</Frame>
</App>

The<Panetabbed> elementr e pr esents a tabbed pamame The do
is a JavaGram convention that implies that there are a number of differentypese

We 6| | s ee an<wPaekeely gshort. Noa k|l 6@6dw whanévastheu s e d
closing tag. We couldhave equally usedPane.tabbed> ; the latter beinghe preferred

style for its superior readabilitizike <Frame>, <Pane.tabbed> is a container. However, the

latter can only contaixrab> elements.

74 JavaGram Agile Development

For our tab, otwatilerand as ganitnage, ibahdof vihich are optional.

Theimage property must be set to the absolute path of a GIF file. However, rather than
specifying the | magesyspsa)t andpassedthetatveimageg, we 0V €
path to it (his path is relative tays.ro ot). This is the recommenderbding style for

specifying image paths, because it ensures that the program will work correctly in both
standéone and clienserver mode (introduced later in this boadg.use() returns the

absolute path of thenagefile and, if necessary, downloads the image from a server.

Note how the callo sys.use() is enclosed in cly bracesln general, when you specify a

value for a property, Anoitéra valeex(p.gg,@anh ahitrary o be a
expression) mustebenclosed in braces. This tells JavaGram that whatever is inside the

braces must be evaluated and the resulting value used instead.

Rather thancodingt he contents of the t abidreds rect | y h
element.This element is very useful wh you want to spread the code for a GUI across

different classes. Thef property of this element must be set to the GUI component that

it represents which, in this case, is a panel specified in the singletoRer$as®anel .

<jag domain="doc/code/cha p4">
singleton class PersonPanel {
static vector <string > STATES = [
"™ "ACTY, NT", "NSW", "QLD", "SA", "TAS", "VIC', "WA"
|

<Panel panel type= Person >

<Layout.border/>
<Panel lay=$north>
<Layout.gridBag/>
<Lay row=0 col=0 weight=0.0 margin=2 align=$east>
<Label title="First Name"/>
</Lay>
<Lay row=0 col=1 fill=$horizontal margin=2>
<Field.text key=$firstName />
</Lay>

<Lay row=0 col=2 weight=0.0 margin=2 align=$east>
<Label title="Last Name"/>

</Lay>

<Lay row=0 col=3 fill=$horizontal margin=2>
<Field.text key=$lastName />

</Lay>

<Lay row=1 col=0 weight=0.0 margin=2 align=$east>
<Label title="Sex" />

</Lay>

<Lay row=1 col=1 fill=$horizontal margin=2>
<Combo key=$sex data=["", "Male", "Female] />

</Lay>

<Lay row=1 col=2 weight =0.0 margin=2 align=$east>
<Label title="DOB" />

</Lay>

<Lay row=1 col=3 fill=$horizontal margin=2>

GUI Programming 75

<Field.date key=$dob format="dd ~ MMMyyyy" />

</Lay>

<Lay row=2 col=0 weight=0. 0 margin=2 align=$east>
<Label title="Occupation" >

</Lay>

<Lay row=2 col=1 fill=$horizontal margin=2>
<Combo key=$occupation model=occupComboModel />

</Lay>

<Lay row=2 col=3 fi lI=$horizontal margin=2>
<Option.tick title="Smoker" key=$smoker />

</Lay>

</Panel>

<Pane.tabbed lay=$center>
<Tab title="Address">
<Panel key=$address type= Address >
<Layout.gridBag/>
<Lay row=0 col=0 weight=0.0 margin=2 align=$east>
<Label title="Street" />

</Lay>

<Lay row=0 col=1 colSpan=3 fill=$horizontal margin=2>
<Field.text key=$street />

</Lay>

<Lay row=0 col=4 weight=0.0 margin=2 align=$east>
<Label title="City" >

</Lay>

<Lay row=0 col=5 fill=$horizontal margin=2>
<Field.text key=$city />

</Lay>

<Lay row=1 col=0 weight=0.0 margin=2 align=$east>
<Label title="State" />

</Lay>

<Lay row=1 col=1 fill=$horizontal margin=2>
<Combo key=$state data={ STATES/>

</Lay>

<Lay row=1 col=2 weight=0.0 margin=2 align=$east>
<Label title="Postcode" >

</Lay>

<Lay row=1 col=3 fill=$horizontal margin=2>
<Field.text key=$postcode />

</Lay>

<Lay row=1 col=4 weight=0.0 margin=2 align=$east>
<Label title="Country" >

</Lay>
<Lay row=1 col=5 fill=$horizontal margin=2>
<Field.text key=$country />
</Lay>
</Panel>

<[Tab>
<Tab title=" Comment">
<Pane.scroll >
<Areatext key=$comment />

JavaGram Agile Development

</Pane>
</Tab>
</Pane.tabbed>
<Panel lay=$south>
<Button title="Bind to Map" image={ sys . use ("lib/gifs/Chain.gif")}
action={bindToMap()} >
<Button title="Bind to Obj" image={ sys . use ("lib/gifs/Chain.gif")}
action={bindToObj()} >
<Button title="Clear" image={ sys . use ("lib/gifs/Clear.gif")}
action={clear()} >
<Button titte ="Map Binding" action={mapBinding()} >
<Button title="Obj Binding" action={objBinding()} />

</Panel>

</Panel>

public static final vector <string > OCCUPATIONS@=sys . sort ([
™ "Engineer", "Scientist", "Accountant", "Teache r", "Manager",
"Administrator", "Health Worker", "Pilot", "Driver", "Mechanic",
"Public Servant", "Judge"

D;

/I Just to illustrates the model style for combos.

protected vague occupComboModel (native combo, symbol cmd, int idx) {
switch (cmd) {
case $count: return sys.length (OCCUPATIONS
case $get: return OCCUPATIONIX];
}

return "™
}
protected void bindToMap () {
map record = map(
$firstName=>"John ", $lastName=>"Smith", $sex=>"Male", $dob=>[#1982 - 12-22],
$occupation=>"Mechanic", $smoker=> true , $comment=>"Sample comment",
$address=>[
$street=>"9 Grange St', $city=>"Balwyn", $state=>"VIC", $postcode=>"3103",
$country=>"Australia"

]
);

gui . bind (panel, record);

}
protected void bindToObj () {
Person record = [@Person
firstName=>"Linda", lastName=>"Forbes", sex=>"Female", dob=>[#1987 - 02-15],
occupation=>"Accountant", smoker=> false , comment=>"Another = comment",
address=>[@ Address
street=>"2 Smith St", city=>"Kew", state=>"VIC", postcode=>"3101",
country=>"Australia"

]
|
gui . bind (panel, record);
}
protected void clear () {
gui . bind (panel, map();

GUI Programming 77

}
protected void mapBinding () {

map record = map);
gui . save (panel, record);
sys. printin (record);

}

protected void objBinding () {
Person record = new Person ();
gui . save (panel, record);
sys . println (record);

}
b
<Uag>

In this class, a person is represengd <Panel> element. A<Panel> is by far the most
commonlyused container; ibrganizs its contents according to a specific layout. Where

a layout is specified, it should appear first inside the panel. If not specified, the panel
layout defaults taLayout.flow>

The toplevel panel in thePersonPanel class is specified to havebamrder layout. This

| ayout all ows you to organize the panel s <ch
$narth
$west fcenter feast
$south

For each child, you can specifyag property, set to one of the above values (defaults to
$center if unspecified). The unesl parts of a border layout shrink to zero. Also, any
unclaimed space is usually taken upbtenter .

In our example, we have a bordayout panel, whergnoth i s used to displ ay
details, $center is used to show address details and commaemnt,$south is used to
display a set of buttons, as illustrated below.

78 JavaGram Agile Development

|£| Demo App T | e

First Mame Last Mame
Sex = DoEB B
Qccupation - Smaoker
Mum and Time | 100,00 H 02:15:30 B

Address | Comment

Street City
State w | Postcode Country

[@= Bind to Map | [== Bind to Obj | | &7 Clear | [Map Binding | [Cbj Binding |

The nortlern panel itself is specified to hawegrid -bag layout This layout is useful for

organizing a set of fields such that they are neatly aligned. Each child is laid ouausing

<lay» el ement, the properties of which deter min
For specifying the fields, wedve used the fo

1 <Label> for the text appearing to the left of each field.

]

<Field.text> for textual fields, such ag$t name.

<Field.date> for date fields, such as date of birtfote the use of thiermat property,
which specifies the preferred format for data entry as well as display.

1 <Combo>for dropdown combo boxes, such as sex.

9 <Optiontick> for check boxes, sudms smoker.

For elementssuch as combo boxehat can display a multitude of values, there are two
ways of specifying these valsieThe sex combo demonstrates the use otlttext data
approach, where theata property is set to the list of values te llisplayed in the
combods dr olrpe occopation condo@ demonstrates the use addate model
approach, where theodel property is set to the name of a method in the same class that
provides thisdatéA ¢ o0 mb o 6 s st mawedhe followng signhare.

vague comboModel (native combo, symbol cmd, int idx)

JavaGram calls this method automatically, passing it appropriate arguments, whenever it
needs to obtain information on how to display the combo.

I n the center of t hepane afitwefaht one oaddeessaletallse d a t a
and one for arbitrary comments. The former is organizaugua gridbag layout similar
to the person details panel. The latter uses two new elements:

1 <Areatext> for text boxes that can accommodate multiple lofeext.

GUI Programming 79

9 <Panescroll> to provide scrolling functionality for anything that can grow bigge
than the physical space it occupies

The buttons in the south panel doe testing purpose€ach is specified as ®utton>
element, whosection property is ealuated when the button is pressed.

4.2.1 Data Binding
When a user is interacting with a GUI, two common patterns occur:

1 Data entry, whereby the user keys in some data into the fields of a screen. The
program then needs to transfer this data to some interralsttatturesuch as an
object, before it can do something useful with it.

1 Lookup, whereby the user retrieves information from, say, a database, and wants to
view it in a screen. Again, the data needs
dat strictureonto the screen fields.

In most GUI frameworks, these two tasks are the direct responsibility of the programmer
and may require much mundane coding. Although you can follow this same approach in
JavaGram, there is a much easier way.

You might havenoticed that in th@ersonPanel class w especified ey property for
each field that can hold a valuEhis property specifies the relationship between a GUI
element andts corresponding programmatic data. With this in place, you can bind an
entire €reen to a corresponding data structure, leaving theléetl detail to JavaGram

to work out.

In JavaGram, the default data structure for bindingrnsap. However, you can also use
classes. If you refer back to th@sonPanel ¢ | as s, y o tubdththe persoh pacee t h a
and the address panel hdkeirtype property respectivelyset to class nam@srson and

Address . The minimal definition for these two classes is as follows.

class Person {
string firstName;
string lastName;
string sex;
date dob;
string occupation;
boolean smoker;
sting comment;
Address address;

class Address {
string street;
string city;
string state;
string postcode;
string country;

80 JavaGram Agile Development

}

The key point to note is that the cksield name match thekey property of the
corresponding panel fields (albeit the latter are specified as symloofgrticular, note
how the address field of the Person class matches thkey=$address property of the
address panel. In other words, claggregation can be mirrored by panel nesting.

Now refer to thebindToObj() method which createsRarson object, whoseddress field
refers to anAddress object. The guibind) call binds the whole person panel to the
person object, which then recursiyélinds the childreifgui is a pseudo clagslike sys i

that provides methadspecific to GUI functionality)Pressing theéBind to Objbutton
causeindToObj() to be invoked and the binding to take effect, the result of which is
displayed below.

| £f Demo App - | (B S
g\ Person |
First Mame |Linda Last Mame Forbes
Sex |Female - DOB |15 Feb 1987 00:00:00 D

Occupation | Accountant v Smoker

Num and Time | 100.00 E] 02:15:30 H
Street |2 Smith St City |Kew

State |VIC w | Postoode (3101 Country |Australia 1

[= Bind to Map | &= Bind to O] | &7 Clear | [Map Binding | [Obj Binding |

The objBinding() method does the opposite. It creates an empdygon object and
invokesguisave() on the panel and this object, causing the panel data to be saved into
the object.Pressing theObj Binding button causesobjBinding() to be invoked, which
prodwces the following output.

[@Person address=>[@ Address city=>"Kew", country=>"Australia", postcode=>"3101",

state=>"VIC", street=>"2 Smith St"], comment=>"Another comment", dob=>[#1987 -02-
15], firstName=>"Linda", lastName=>"Forbes", occupation=>"Accountant
sex=>"Female", smoker=>false]

It 6s I mpor t arnnerAidess ob@edt beretishactually tréated by JavaGram
(as a result of the binding rules) and not the programmer.

The Bind to Map and Map Binding buttons, respectively, invokeindToMap() and
mapBinding() . These have the same effect as the corresponding object buttrzds
but use maps fatata binding instead.

GUI Programming 81

Finally, theClear button, clears all the panel data by binding the panel to an empty map.

An obvious question arises fromig discussion: given the choiceajectsand maps for
databinding, which one is recommendeA things consideredthe answedepends on

the situation at handror example, suppose you have a search panel where you allow the
user to specify search taria using a collection of fields. This is best served by amoad

data structureso map binding would be ide&n the other hand, if the search returns a
collection ofobjects (such as productsch ofwhichis already an lgject,ités best to use
theseobjectsfor the data bindig of the screen that displays a product

4.3 Trees

Trees are useful for visliaing hierarchical informationwhere there is parewchild
relationship. The root of #&ree consists of zero or momeodes,where each node can
containchild nodes, and so oA tree isdefined using theTree> element andts nodes
are defined using tha\ode> element.

As an example, consider a class that provides a tree view of a task hierarclagtsugh
to build a shed.

<jag domain="doc/code/chap 4">
singleton class TaskTree {

<lcon icon image={ sys . use ("lib/gifs/Hammer.gif")} >
<Tree tree event=treeHandler>
<Node title="Building a shed" image={icon}>
<Node title="Build foundation" image={icon}>

<Node titl e="Mark base and dig" />
<Node title="Secure wire mesh" />
<Node title="Pour concrete" />

</Node>
<Node title="Build frame" image={icon} content="Shed.gif">
<Node title="Measure and cut timber" />
<Node title="Erect and nail walls" />
<Node title="Secure frame to foundation" />
</Node>
<Node title="Install roof' image={icon} />
<Node title="Install cladding" image={icon} />
<Node title="Install door" image={icon} />
</Node>
<[Tree>
<Pane.split split divider=150 weight=0.3 >
<Pane.scroll lay=$west>

<Indirect ref={tree} />
</Pane.scroll>
<Panel blank lay=$east>
<Label title="No Detail" />
</Panel>
</Pane.split>
<Pane.scroll picView>

82 JavaGram Agile Development

<Label picture />
</Pane.scroll>
protected void treeHandler ~ (native comp, symbol event) {
switch (event) {
case S$select:
int oldDiv @=split.divider;
vague node = tree.select;
vague content = node@<Node>?.content;
if (content instanceof string) {

string path = sys. pathConc ("doc/code/chap4’, content@ string);
picture.image = sys. use (path);
split.east = picView;

} else
split.east = blank;

split.divider = oldDiv;

break ;

case $drill:

case $expand:

case $collapse:
break ;

}

}
b
<Uag>

Not e h o defineceadbxicos> and reused it for specifying theage property of a
number of<Node> elements. We could have equally defined tloeleimage properties
directly, but this approach is mocenvenient anefficient, because the image is created
only once andgubsequentlyeused.

We 6 ve al s aPanespii>e delerhemteto create a split pane, whagest side
contains thetreeandwhosasts i de i s reserved for displ
node.Thedef ault content is a blank panel, w
The alternative content is thpieView s cr ol | pane, which wedl
handler to display an image.

yin
i ch
| €

a
h
I

The interesting stuffdppens in the tree event handlmgthodtreeHandler() . A tree can
generate four kinds of event:

7 $select is raieed when a tree node is selected or deselected.

{1 $dill is raised when a tree node is doutlieked.

1 $expand is raised when a parent node is expanded.

1 $collapse is raised when a pant node is collapsed.

I n this exampl e, w e$éelecte evenh Ngte how dne of ¢the treed i n t

nodes (Build frame) hascantent property. This property can be set to any arbitrary data
that we want to associate with a no8er example, imm CRM application, a tree node

GUI Programming 83

representing a customer coul d have its con

programmed the handling of ti$select e v en't such that the curren
content is displayed in the split paneb6s eas
Inthh s exampl e, wedre using an image file nam

when the node is selected, avélisplay this image in the east sid@ do this, the event

handlergets the currently selected node using thestle@ property.This pioperty is of

typenatve because its underlying object (a tree n
this type used extensively when writing GUI code. To getnthee d eorfers property

we use the notatiomde@<Node>?.content . The latter requires sonexplanationBecause

node is of typenative , we must cast it to the correct GUI element type before we can

reference any of its properties. We do this using the notatice®<Node> To get a

property, we usually use the dot notation. However, when ainatkselectechode ends

up beingnull , so to guard against this, we use the quest@n{.) notation instead of

the dot notation. This is a JavaGram convenience that you can use when accessing a GUI

el ement 6s propert i dnsotheawordgn obj ect ds member s.

vague content=node@ <Node>?.content;
is equivalent to writing

vague content= node== null ? null : node@<Node>.content;

If the content is a string then we treat it as a file name, work out its path, sétdiee
property ofpicture to it, andset the east side of thplis pane topicView (this causes the
image to be displayh. Otherwise, we set the east side of split paherto .

When you change the content of a split pane, it may adjust the divider position to
accommodat e digsplayang. Ty aancé the effect of this, we get dhiger
property of the split pani@st and restord last

Adding a tab foffaskTree to our demo approduces the following.

84 JavaGram Agile Development

%) Demo App I e e
’ & Person} 41, Tree !

(=4, Building a shed

|—74§ Build foundation
- Mark base and dig
- Secure wire mesh

- Pour concrete

---Measure and cut timber

Erect and nail walls

- Secure frame to foundat
»»»» & Install roof

& Install dadding
- & Install door

4.3.1 Using a Tree Model

I n the above exampl e, pwagdwe hudeod tstpecdif yeao
nodes. You also have the option of usindgéa modelinstead. The latter is usefwhen

the tree data is dynami c o-reate ¢che hodes.gcer t hat
example, if the data is sourced from a datalza=k potentially large, it would be more

sensible to use a data model approach.

To specify a data model for a tree, setnitdel property to the name of the tree model
method (defined in the same clas3jst to illustrate the approach, here is a revised
version of theTaskTree class that uses a tree data model.

singleton class TaskTree2 {
<lcon icon image={ sys . use ("lib/gifs’Hammer.gif")} />
<Tree tree event=treeHandler model=treeModel>
<[Tree>
<Pane.split split divider=150 weight=0.3 >
<Pane.scroll lay=$west>
<Indirect ref={tree} />
</Pane.scroll>
<Panel blank lay=$east>
<Label title="No Detail" />
</Panel>
</Pane.split>
<Pane.scroll picView>
<Label picture />
</Pane.sc roll>
static mapint , map> tasks @=[
1=>[$name=>"Building a shed", $subs=>[2, 3, 4, 5 6]
,2=>[$name=>"Build foundation", $subs=>[7, 8, 9

GUI Programming 85

,3=>[$name=>"Build ~ frame", $subs=>[10, 11, 12], $data=>"Shed.gif"]

A=>[$name =>"Install roof']
,5=>[$name=>"Install cladding"]
,6=>[$name=>"Install door"|

,/=>[$name=>"Mark base and dig"]
,8=>[$name=>"Secure ~ wire mesh"]
,9=>[$name=>"Pour concrete"]
,10=>[$name=>"Measure and cut timber ']
,11=>[$name=>"Erect ~ and nail walls"]
,12=>[$name=>"Secure ~ frame to foundation"]
}
statc int rootld = 1;
protected vague treeModel (native tree, symbol cmd, native node, vague subnode) {
switch (cmd) {
case $count:
return node == null ? 1 : sys.length (getSubs(node));
case $get:
int id = node == null ? 1 : getSubs(node)[subnode@ int J;
return getNode(id);

case S$index:
retu r indexOfSubnode(node, subnode);
case $leaf:
vector subs = getSubs(node);
return subs == null || sys.length (subs) == 0;
return null ;

}

protected vector <int > getSubs (native node) {
map content @=node == null ? tasks [rootld] : node@<Node>.content;
return (content == null ? null : content[$subs])@ vector <int >;

protected native getNode (int id) {
map task = tasks [id];
if (task[$node] == null)
task[$node] = qui . create ($Node, map($title=>task[$name], $content=>task,
$image=>icon));
return task[$node];

protected int indexOfSubnode (native node, native subnode) {
if (node != null) {

int idx = 0;
for (int id in getSubs(node)) {
if (tasks [id][$node] == subnode)
return idx;
+Hidx;
}
}
return 0;

}

protected void treeHandler ~ (native comp, symbol event) {
switch (event) {

86

JavaGram Agile Development

case $select:

file);

int oldDiv @=split.divider;
vague node = tree.select;
string file @=node@<Node>?.content@ map?.$data;
if (file = null) {
sting path = sys. pathConc ("doc/code/chap4’,
picture.image = sys . use (path);
split.east = picView;
} else
split.east = blank;
split.divider = oldDiv;
break ;
case $drill:

case $expand:

case $collapse:
break ;

}

}

The data that drives the model is denoted bytdike static mapWe 6 v e

such that it resembles data retrieved from

mo d e
a datadaseaps each task ID to its

definition. For parent tasks, the latter containsuas key that points to a vectaf its

children task IDs.

The tree model is denoted by threeModel()
commands:

method, which accepts four possible

1 $count requires the number ohiddren ofnode to be retured.

1 $get requires then-th child ofnode (as denoted byubnode as an integer index) to be

returned.

1 S$index requires the zerbased index ofubnode as a child ofiode to be returned.

1 $leaf requires true to be returnechdde is a leaf node.

These are dmed using three utility methods, whidre self-explanatory, except for
getNode() . The latter returns a&Node> for a given task ID.New nodes are created

procedurally using thegui.create()

symbol) and a maphat specifies its properties. A newdyeated node is cached by

storing it in the task definition map under thnede k e y ,

it every time.

Finally, notehowwe 6 ve changed

so that we

our apprcetentc propety

of each nodé thecorrespondingask definition map. ThereforggeHandler() is revised
accordingly.
GUI Programming 87

| ed

method, which takes a GUI element name (as a

donot

wh at

t

h

n

W

The above moddbased tree produces exactly the same visual result as the earlier direct
data version.

4.4 Tables

Most applications must deal witabular data (i.e., data iterathatconform to thesame
structure such asbjects of the same class, or maps sharing the same Regejnmon
example ighe result of a searclihe<Table> element isded for visualizing tabular data.

Recall thePerson class fom an earlier section and suppose thaheed a table to display
persongetrieved froma database.

<jag domain="doc/code/chap4">
<load >
"doc/code/chap4/PersonPanel”
</load>
singleton class PersonTable {
static final vector <map> TABLE _FORMAT@=[
[$key=>$firstName, $title=>"First Name", $width=>80, $align=>$west]
[$key=>%lastName, $title=>"Last Name", $width=>100, $align=>$west]
[$key=>%$sex, S$title=>"Sex", $width=>40, $align=>%west]
[Bkey=>%dob, $title=>"DOB", $width=>80, $align=>%east, $format=>"dd ~ MMMyyyy"]
[$key=>Soccupation, $title=>"Occupation”, $width=>60, $align=>$west]
[Bkey=>$smoker, S$title=>"Smoker", $width=>40, $align=>$center]
I
static vector <Person > persons = |
[@Person firstName=>"John", lastName=>"Smith", sex=>"Male"
, dob=>[#1982 -12-22], occupation=>"Mechanic", smoker=> true
]
[@Person firstName=>"Linda", lastName=>"Forbes", sex=>"Female"
, dob=>[#1987 -02-15], occupation=>"Account ant", smoker=> false
l
[@Person firstName=>"Bob", lastName=>"Smart", sex=>"Male"
, dob=>[#1984 -07-11], occupation=>"Teacher", smoker=> false

]
5
<Panel panel>
<Layout.border/>
<Pane.scroll lay=$center >
<Table table format={ TABLE FORMAJ data={ persons } autoSize= true
event=tableHandler />
</Pane.scroll>
<Panel lay=$south>
<Button title="Dump" action={dump()} enable={canDump()} />
</Panel>
</Panel>
protected vague tableHandler (native comp, symbol event) {
switch (event) {
case $select:
gui . maintain (panel);

88 JavaGram Agile Development

break :
case $drill:
dump();
break ;
case $hitCell:
break ;

}

return null ;

}
protected void dump () {
sys. ppIn (persons [table.select@ int]);

protected boolean canDump () {
return table.select = null ;
}
}

<l/jag>

Like trees,a bl es can accept direct data or a dat
approach, for whi ch wedson ®bjects.lreareabapplicatiors t at i ¢\
this data is likely to originate from a data source such as a database.

The tfanatl peoPesty is set to thRABLE_FORMAVector which specifies the format of
each column as a mayhose structure should be seKplanatoryln the panel below the
table, webve created a butt ealectddoow. dumpi ng t h

We 6 v e specifiezl an event handler method for the tree. A tree can raise three kinds of
event:

1 $select is raised when a row is selected or deseledtedl.r this event, we 0
gui.maintain() on the whole panel so that JavaGram can update the visibility of th
components.

1 $dill is raised when a row is doubtéicked. In responséo this event, we dump the
rowdés object to sdumpp.dard output by calling

M shitCell is raised when a cell is clicked.

Adding this to the demo application gives us the following.

GUI Programming 89

Note how wé v used$format

Thi s

| %] Demo App

e s S

| € Persan | §T Tree |Tab|e|

First Name Last Name Sex & DOB| #* Occupation & Smoker
ﬁ\ John Smith Male 22 Dec 1982 [Mechanic
ﬁ\ Linda Forbes Female 15 Feb 1987 [Accountant 0
£ Bab Smart Male 11 Jul 1384(Teacher [l

2
<
=]

approach

i s

a more general approach shortly.

hand

y but

of I

for the DOB column to specify a preferred date format.
mi
changing the format of th@mokercolumn to use ticks instead of true/falgée 6 | dentp r e

t ed

By default, the even and odd rows of a tabledxesvn withdifferent background colors
to aid readability. You can change the row background ciprsetting thebgColorOdd
andbgColorEven properties.

A table can b sortedby any given column. To sort in ascending column order, click on
the column heading. To sort lescending column order, shiick on the column

heading. In either case, a small triangle appears in the column heading to indicate the sort
order.You can turn off sorting by setting thatAscend or sortDescend property tonull .

You can also control the sorting order by rightking on a cell or heading and choosing
from the resulting popup menu.

4.4.1 Using a Table Model

Let 6

singleton
static
static
static
static

static

s |

class
<Field.date
<Option.tick
<lcon

final

[$key=>$sex,

, map($key=>%dob,

ook

icon

@n of tlke aboesxampletdillusirataa $ew more thing$ the
ability to edit cells, use of a data model, and more elaborate formatting of the cells.

PersonTable2 {

dateField

smokerField

/>

ali gn=$center
<Combo occupCombo data={ PersonPanel . OCCUPATIONE>
image={ sys . use ("lib/gifs/Person.gif")}

Name", $width=>80,

$title=>"First Name",
$title=>"Last
S$title=>"Sex", Swidth=>40,
$title=>"DO B", $width=>80

enable= false/>

vector <map> TABLE_FORMAT@=vector (
[$key=>S%firstName,
[$key=>$lastName,

$width=>70,

$align=>$west]

/>

$align=>$west,

$align=>%west]

, Salign=>%$east,

$icon=> true]

90

JavaGram Agile Development

us

e .

$format=>"dd MMMyyyy", $editor=> dateField)

, map($key=>%occupation, $title=>"Occupatio n', $width=>80, $align=>%west,
$editor=> occupComhbo)

, map($key=>%smoker, $title=>"Smoker" , $width=>40, Salign=>$center,
$editor=> smokerField)

);
static vector <Person > persons = |
[@Person firstName=>"John", lastName=>"Smith", sex=>"Male"
, dob=>[#1982 -12-22], occupation=>"Mechanic", smoker=> true
],
[@Person firstName=>"Linda", lastName= >"Forbes”, sex=>"Female"
, Odob=>[#1987 -02-15], occupation=>"Accountant", smoker=> false
],
[@Person firstName=>"Bob", lastName=>"Smart", sex=>"Male"
, Odob=>[#1984 -07-11], occupation=>"Teacher", smoker=> false

]
I
<Panel panel>
<Layout.border/>
<Pane.scroll lay=$center>
<Table table format={ TABLE FORMAJ editable= true autoSize= true
styled= true model=tableModel event=tableHandler />
</Pane.scroll>
<Panel lay=$south>
<Button title="Dump" action={dump()} enable={canDump()} />
</Panel>
</Panel>
protected vague tableModel (native comp, symbol cmd, int row, int col) {
switch (cmd) {

case $rows:
return sys. length (persons);
case $cols:
return sys. length (TABLE_FORMAJT
case $get:
return persons [row][TABLE_FORMATol][$key]@ symbol];
case $put:
persons [row]] TABLE_FORMAFoI][$key]@ symbol | = table.put;
break ;
case $style:
return TABLE_FORMA[tol][$key] == $lastName ? [$bold] : null ;
case $icon:
return TABLE_FORMA[tol][$key] == $firstName ? icon : null ;

case $sortAscend:

case $sortDescen d:
sys.sort (persons , cmd == $sortAscend, vector (TABLE_FORMATtol][$key]));
break :

return null ;

}

protected vague tableHandler (native comp, symbol event) {
switch (event) {

GUI Programming 91

case $select:
gui . maintain (panel);

break ;
case $drill:
dump();
break ;
case $hitCell:
break ;
return null ;

}
protected void dump () {

int row @=table.hitCell[0];
int col @=table.hitCell[1];

sys. println (tableModel(table, $get, row, col));
protected boolean canDump () {
return table.select I= null ;
}
}
Here i s what we 0Veditab deoandstyled \pMepenies ofthe tdbtd h e
true, and set itsnodel property totableModel) . Addi ti onal |l vy, webve e
TABLE_FORMATvector to nominate an editor for the last three coluriihgs enables the
user to directly edit the cells in these coshs. A key point to note is

map() to specify the format of these columns, because each is referring tcliéeradn
(e.g.,dateField).

The interesting stuff happenstahleModel() , whichacceptghesepossiblecommands:

1 $rows requires theaumber oftablerows to be returned.

T $cols requires the number table columns to be retdrn

1 $get requires the value at the cell denoteddayandcol to be returned.

1

$put is required for editable tables and should make the changedt permanent.
The updated value can be acahssing theput property of the table.

1 $style should returmull or a vector of values that specify the font style and/or color
of the text in a cellThis has no effect unless tigled property of the table is also
set to tue.

1 S$icon should returmull or the icon to be displayed in a cdlhis has no effect unless
thesicon key of the column format is also set to true.

1 $sortAscend and$sortDescend should sort the underlying data for the model.

A minimal data model must iplement thesrows , $cols , and$get commands.

92 JavaGram Agile Development

Finally, the behavior of an editable table is noticeably different from agelgydable. In

the latter, clicking on a row causes the entire row to be selected, whereas in the former,
the specific clickedaell is selectedConsequently, théump() method is revised to behave
differentlyT it writesto standard output the value of a cell, not the entire row!

The visual result of the revised table is shown below.

| /ﬁ\ Person | ‘J}_Tree| Table ‘
First Mame Last Mame Sex & DOB|#” Occupation & Smoker
£ John Smith Male 22 Dec 1982 |Mechanic
g\ Linda Forbes Female 15 Feb 1987 [Accountant [
€ Bab Smart Male 11 Jul 1984 Teacher =l]
Health Worker =
Judge
Manager
Mechanic I
Filot |
Public Servant |
Scientist
[Teacher -
_ -
4.4.2 Lists

A list is a table that hagsingle colunn and no heading-unctionally, however, lists are
closer to combdoxes than to tabled.ists are rarely used because combos are just as
good and take | ess real estate. The only
want to select multiple vas from the list, whichis not possiblevith combos.

There is also a list element that provides a checkbox for each row. This is suitable for
situations where the user needs to nominate a number of things froranéigly large
set.

Here is a class &t demonstrates the use of lists.

<jag domain="doc/code/chap4">
singleton class ListTest {
static final vector <string > CAPITAL_CITIES = [
"Sydney", "Melbourne", "Brisbane", "Perth",
"Adelaide", "Canberra”, "Hobart", "Darwin"
J
static final vector <list > ACTIVITIES = |
("Recreation and Sports", true)
("Sight Seeing", false)
('Bush Walking", false)
("Wine Tasting", true)
("Dining", true)
("Music and Theatre", true)

GUI Programming 93

S

1

5
static final vector <list > LANGUAGES |
("English", true)

("talian”, true)
,("Greek", true)
,("Chinese”, true)
("Viethamese", false)
,("Japanese", false)

<Panel panel>
<Layout.horizonta I/>

<Panel title="Australian Capital Cities">
<Layout.border/>
<Pane.scroll lay=$center>

<List cites data={ CAPITAL_CITIES } multiSelect= true/>
</Pane.scroll>
<Panel lay=$south>
<Button title="Select All' action={cities.selectAll = true }/>
<Button title="Dump" action={ sys. printin (cities.select)} >
</Panel>
</Panel>
<Panel title="Activities">
<Layout.border/>
<Pane.scroll lay=$center>
<List.tick acts data={ ACTIVITIES }/>
</Pane.scroll>
<Panel lay=$south>
<Button title="Tick All" action={tickAll(acts, true)} />
<Button title="Untick All' action={tickAll(acts, false)} />
<Button title="Dump" action={ sys.printn (ACTIVITIES)} />
</Panel>
</Panel>
<Panel title="Languages">
<Layout.border/>
<Pane.scroll lay=$center>
<List.tick langs model=langModel />
</Pane.scroll>
<Panel lay=$south>

<Button title="Tick All" action={tickAll(langs, true)} />
<Button title="Untick All" action={tickAll(langs, false)} />
</Panel>
</Panel>
</Panel>
protected void tickAll (native It, boolean tick) {
[t@ <List.tick> tickAll = tick;
[t@ <List> .refresh = true ;

protected vague langModel (native comp, symbol cmd, int idx) {
switch (cmd) {
case $count:
return sys. length (LANGUAGES

94

JavaGram Agile Development

case $get:
return LANGUAGHRIX][O];

case $tick:
return LANGUAGHRIX][1] == true ;
case $toggle:
return LANGUAGHRIX][1] = | LANGUAGHRIX][1]]@ boolean ;
}
return null ;
}
}
<ljag>

The class uses laorizontal layout to display three lists side by side. The first list is
defined using thelist> element and displays the Australieapital cities. The second
list is created using thetist.tick> element and displays a list of tourist activitiBeth
these lists are defined using direct ditate that the expected data format for a-tisk

is a vector of lists, where each list ststs of a string and a boolean. The latter controls
the tick state of the item (true meditked).

The last listdemonstrates the use af data model, implemented by the method
langModel()

The visual result of thislassis shownbelow.

|£| Demo App — TR — R —c-
| € Person | §1 Tree | Table| Lists |

Australian Capital Citigz Ackivities Languages
Sydney Recreation and Spaorts English
Melbourne [] Sight Seeing Italian
Brisbane [] Bush Walking Greek
Perth Wine Tasting Chinese
Adelaide Dining [] vietnamese
Canberra Music and Theatre [Japanese

Hobart
Diarwin

[selectAll | [Dump | [Tick All | [Untick All | [Dump | [Tick All | [Untick Al | JI
_

45 Grids

One imitation of tables is that all rows need to conform to the same structure (i.e., share
the same columns). Some user irdeef scenarioare better served by allowing different
rows to be structured differently. Griddfer this flexibility, as well as thability to
specify dependencies between thesc&lonversely grids lack some of the strengths of
tablesi you <canot u s leecause tdeesetisano ondfadne dostructureand,

GUI Programming 95

consequently, it would be impractical ise grié for very large data $& The choice
therefore, involves tradeoffs.

As an example hie following clas uses a grid tmplementan online shopping car

grid is defined using the&Grid> element, within which you can defir€olumn> and<Row>
elements.The purpose of aColu mn> element is to specify the properties of a column,
whereas a&Row>element defines a visible row in terms<Gtll> elements that define the
data to be displayed inside the cellsually, the same property can be defined at cell,
column, or row levellf a property is not explicitly definetbra c el | , t hen
from the column, the row, or a default cell (in that order).

<jag domain="doc/code/chap4">
singleton class CartGrid {
static final string HEAD_BG= "0xCCCCCC";
static ~ final string HEAD_FG= "0x990000";

<Grid grid>
<Column description size=200 kind=$text lock="true/>
<Column quantity size=50 format="0,000" align=$east kind=$number />
<Column weight size=50 format="0,000.00kg " align=$east kind=$number lock="true/>
<Column price size=70 format="$0,000.00" align=$east kind=$number lock=true/>
<Column delete size=50 align=$center lock="true/>
<Row lock= true bgColor={ HEAD BG& fgColor={ HEAD_FG&>
<Cell value="Shopping Cart" align=$center colSpan=4 font={bold} />
</Row>
<Row lock= true bgColor={ HEAD_BG fgColor={ HEAD_F®>
<Cell value="ltems in Cart" />
<Cell value="Quantity" />
<Cell value="Weight" />
<Cell value="Price" />
</Row>
<Row lock="true >
<Cell value="Add Item" border=0 link={ Catalog . singleton .chooseProducts()} >
<Cell value="Shipping:" border=0 />
<Cell value=0 />
<Cell calc ={shippingCost()} >
</Row>
<Row lock=true >
<Cell value="Checkout" border=0 link={checkOut()} >

<Cell value="Total:" border=0 />

<Cell calc={totalColumn(2)} >

<Cell calc={totalColumn(3)} >
</Row>

<[Grid>
public void additems (vector <Product > prods) {
for (Product prod in prods) {
int idx = gridrows - 2
GridRow row = new GridRow(this , prod);
grid += list (row.row, idx);

96 JavaGram Agile Development

o

}

grid.recalc = true ;

}

void deleteRow () {
int row = grid@ <Grid> .hitCell[0];
grid -= row;
grid.recalc = true ;

protected real totalColumn (int col) {
real total = 0.0;
for (int row =2, n=grd rows - 1, row < n; ++row) {
vague val = gui.getCell (grid, row, col)@ <Cell> .value;
if (val instanceof real)
total += val@real ;

return total;

}
protected real shippingCost () {

return totalColumn(2) * 5.5
}

protected void checkOut () {
Ilgui.toHtml(grid);
}

</ jag >

The properties used in this example are:

T

T
T
T

size specifies the width of a column or cell.
format specifies the format for displaying values withioedl.
adign speci fies how a cell 6s value Iis to be al

kind specifies the kind of value to be displayed in a cell, and must be oftexof;
StextArea , $combo, Snumber , $date , $time , or $tick .

lock al | ows a cell to be Icliaogeled so that its v

fgColor andbgColor control, respectively, the foreground and background color of a
cell.

value denotes the actual value displayed in a cell.

rowSpan andcolSpan control the vertical and horizontal span of a cell (both default to
1).

font species t he preferred font for displaying e
border speci fies the thickness of a cell 6s bor

ik speci fies the action for a 6hotd cell (t
causes the link action to execute).

GUI Programming 97

1 calc specifies a formla for automatically calculating the value of a cell.

Here is what this grid loadike on the screen.

|| Demo App - | (S| S
/ﬁ\ Person & Tree Table Lists ﬁG”d
Shopping Cart ﬁ
Ikems in Cark |Quantity ‘eight Price
Add Ikem Shipping: | 0.00kg 40,00
Checkout Tatal: | 0.00kg $0.00

Note how theAdd Itemand Checkoutcells are linked to thadditem() and checkout()

methodsAlso note how théotalColumn() method is used by thalc property of the last

two cells. This method usesi.getCell() to access the value of the cells above it, and

adds them up to dynamically update the tot&lertain events (e.g., the user editing a

cell 6s value) cause Ja\albckr mopertiesan agaidi Thsmat i cal |
can also be done pr ogr armanaprdpartato trug, abdpones et t i n
by theadditem() method.JavaGram performs a recalculation of a grid by processing the

cells left to right and top to bottoritherfore,calc properties may contain backwavdt

not forwardcell references.

The intended behavior for th&dd Itemlink is to display another window, listing the
available products for purchase, from which the user can make selections. These
selections e then added as rows above &Aus Itemrow.

CartGrid.addltem() uses three other class@smduct is a simple class for representing
purchasable products.

class Product {
protected getable string id;
protected getable string name;
protected getable real weight;
protected getable real price;
public string format () {

return $'{id} {name} @${price}";

}

}

GridRow is a simple class for adding a new grid row that represents a product added to the
cart.

98 JavaGram Agile Development

class GridRow {
sta tic final string INPUT_BG = "OXFFFFFF";
CartGrid ~ cart;
Product product;
delayed <Row row>
<Cell value={product.format()} >
<Cell quant value=1 bgColor={ INPUT_BG />
<Cell calc={quantvalue@ int * product.getWeight()} >
<Cell calc={quantvalue@ int * product.getPrice()} >
<Cell value="Delete" link={cart.deleteRow()} >
</Row>
public ~ GridRow (CartGrid cart, Product product) {
this .cart = cart;
this .product = product;
}
public nati ve getRow() {
return row;
}
}

The constructor records the grid to which the row is to be added and the product that it
representsNote how the row is defined asdelayed class membelThe reason is that

s ome of t he

values.

r o wordo class ffidlds, puchogare ard progug .
therefore vital that the row is initializexfter the constructor has set these fields to valid

réft és

The third and fourth cell uslc properties to, respectively, calculate the product weight
and prie, based on the purchase quantity. The last cell Imks roperty thatllowsthe

row to be deleted.

Finally, theCatalog classdisplays avindow that lists the available products for the user
to choose fromThe products are displayed in a table, ¥oh i ¢ h
property oftable

dummy data. Note how thaultiSelect

weodve
is set to true to allow the user

to select multiple rows (by holding the control or shift key down while clicking).

This window is created using <Dialog>
section).

singleton class Catalog {
vector <Product > selected;
<Dialog dialog title="Choose
width=300 height=200>
<Layout.border/>
<Pane.scroll lay=$center>
<Table table
multiSelect=
</Pane.scroll>
<Panel lay=$south>

a Product"

element (dialogs aredescribed in the next

parent={ CartGrid . singleton .grid}

data={ PRODUCTS format={ FORMAJ autoSize= false
true event=tableHandler />

GUI Programming

99

setup

}

<Button title="OK" action={ok()} enable={canOk()} />
<Button title="Ca ncel" action={cancel()} >
</Panel>
</Dialog>
protected vague tableHandler (native comp, symbol event) {
switch (event) {
case $select:
gui . maintain (dialog);

break ;
case $drill:
ok();
break ;
}
return null ;

protected void cancel () {
selected = null ;
dialog.show = false ;

}
protected void ok () {
selected @=vector ();
for (int idx in table.select@ vector <int >)
sys . append (selected, PRODUCTI®IX));
dialog.show = false ;
CartGrid . singleton .addltems(selected);
}
protected boolean canOk () {
return table.select I= null ;

public vector <Produc t> chooseProducts () {

table.select = null ;
gui . maintain (dialog);
dialog.show = true ;

return selected;

static ~ vector <map> FORMAT= [

[$key=>$id, $title=>"ID", $width=>50, $align=>$west]

[$key=>%na me, S$title=>"Name", $width=>150, $align=>$west]

[Bkey=>$weight, $title=>"Weight", $width=>60, $align=>%east, $format=>"0.00kg"]
[Bkey=>$price, $title=>"Price", $width=>80, $align=>%east, $format=>"$0,000.00"]

I

static vector <Prod uct > PRODUCTS= |
[@Product id=>"EG001", name=>"Portable =~ CD Player", weight=>0.12, price=>120.95]
@ Product id=>"EG002", name=>"Plasma TV", weight=>28.45, price=>2199.0]
@ Product id=>"EG003", name=>"Coffee Maker", weight=>6.8, price=>175.99]

ThechooseProducts() method is the main entry point, which displays the dialogoeoe
the user presses tl@K button, returns a vector of products that the user has selected.

100

JavaGram Agile Development

We 6 v e d eehablenprogerty di tbeOK button suchthat the button is enabled only
when the user has selected at least one row from the table.

Here is what the diagplooks like.

|£| Choose a Product @
D MName Weight Frice
EGO01 |Portable CD Player 0.12kg £120.95
EGD02 |Plasma TV 28.45kg §2,199.00
EGOO3 Coffee Maker 6.80kg $175.99
[]
oK

Referring back to th€artGrid.addltem() method, it callshooseProducts() and iterates
through the returned vector, adgim grid row for each produch row is added by
creating an instance 6fidRow and then adding the row to the grid using the notation

grid+= list (row.row, idx);

The right side of this assignment is a list of two elememtgid row anda zerobased
row index.This causes the row to be added to the grid at the nominated row position.

Choosing the first two products from the list and setting the quantity of the first row to 2
produces the following.

|£| Demo App * - - o |
| ﬁ\ Person | &, Tree | Table | Lists | i Grid |
Shopping Cart ﬁ

Items in Cark Quankity | Weight Price

EGO01 Portable <O Player @$120,95 2| D.24kg $241,90 | Delete |

EGOOZ Plasma TV @$2193.0 1| 28.45kg | $7,199.00 | Delete

add Item Shipping: | ©0.00kg $157.79

Checkout Total: | 28.6%9kg | $2,598.70

Now, have a look at the meth@drGrid.deleteRow () . This method is invoked when the
user clicks théDeletehot link of the last cell of a produdt. removes the row using the
following notation:

grid -=grid@ <Grid> .hitCell[0];

GUI Programming 101

